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CORRELATIONS BETWEEN CHAOS IN A PERTURBED SINE-GORDON’
EQUATION AND A TRUNCATED MODEL SYSTEM*

ALAN R. BISHOPt, RANDY FLESCH%, M. GREGORY FORESTS',
DAVID W. MCLAUGHLINY, aND EDWARD A. OVERMAN, 11§

Abstract. The purpose of this paper is to present a first step toward providing coordinates and associated
dynamics for low-dimensional attractors in nearly integrable partial differential equations (pdes), in par-
ticular, where the truncated system reflects salient geometric properties of the pde. This is achieved by
correlating:

(i) Numerical results on the bifurcations to temporal chaos with spatial coherence of the damped,
periodically forced sine-Gordon equation with periodic boundary conditions;

(i1) An interpretation of the spatial and temporal bifurcation structures of this perturbed integrable
system with regard to the exact structure of the sine-Gordon phase space;

(iii) A model dynamical systems problem, which is itself a perturbed integrable Hamiltonian system,
derived from the perturbed sine-Gordon equation by a finite mode Fourier truncation in the nonlinear
Schrodinger limit; and

(iv) The bifurcations to chaos in the truncated phase space.

In particular, a potential source of chaos in both the pde and the model ordinary differential equation
systems is focused on: the existence of homoclinic orbits in the unperturbed integrable phase space and
their continuation in the perturbed problem. The evidence presented here supports our thesis that the chaotic
attractors of the weakly perturbed periodic sine-Gordon system consists of low-dimensional metastable
attracting states together with intermediate states that are O(1) unstable and correspond to homoclinic states
in the integrable phase space. It is surmised that the chaotic dynamics on these attractors is due to the
perturbation of these homoclinic integrable configurations.
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Introduction. The purpose of this paper is to present a first step toward providing
coordinates and associated dynamics for low-dimensional attractors in nearly integrable
partial differential equations (pdes). In this paper we describe

(i) Numerical results on the bifurcations of the damped, periodically forced
sine-Gordon equation with periodic boundary conditions which reveal attractors that
are spatially coherent while temporally chaotic;

(ii) An interpretation of the spatial and temporal bifurcation structures of this
perturbed integrable system with regard to the integrable structure of the sine-Gordon
phase space;

(iii) A model dynamical systems problem, which is itself a perturbed integrable
Hamiltonian system, derived from the perturbed sine-Gordon equation by a finite
mode truncation in the nonlinear Schrédinger limit; and

(iv) The bifurcations to chaos in the four-dimensional truncated phase space.

* Received by the editors June 16, 1988; accepted for publication (in revised form) December 1, 1989.

T Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratories, Los
Alamos, New Mexico 87545.

i L.A.M.F. Technical University of Denmark, Building 303, DK-2800, Lyngby, Denmark.

§ Department of Mathematics, Ohio State University, Columbus, Ohio 43210.

q Department of Mathematics and Program in Applied Mathematics, University of Arizona, Tucson,
Arizona 85721. The work of this author was partially supported by National Science Foundation grant DMS
8403187 and Air Force Office of Scientific Research grant AFOSR 830227.

! The work of this author was partially supported by National Science Foundation grant DMS 8803465.

2 The work of this author was partially supported by National Science Foundation grant DMS 8818640
and Air Force Office of Scientific Research grant AFOSR 88-0195. This author acknowledges a grant of
computer time from the Ohio Supercomputer Center.

1511



1512 BISHOP, FLESCH, FOREST, MCLAUGHLIN, AND OVERMAN

In particular, we focus on a likely source of chaos in both the pde and ordinary
differential equation (ode) systems: the existence of homoclinic orbits in the unper-
turbed integrable phase space and their continuation in the perturbed problem.
In the last part of this study, we numerically correlate the homoclinic crossings in the
chaotic dynamics of the full and reduced problems.

While the present paper does succeed in revealing homoclinic structure of the
pde in a finite mode truncation, we do not claim that this four-dimensional real
truncation is sufficient for other important features. On the contrary, two more
dimensions are required to accurately cover the attractor [11], to resolve the unstable
manifolds of metastable states on the attractors [12], and to quantitatively reproduce
the pde bifurcation sequence [11].

These and similar [1], [2] experimental results provide information about

(i) The coexistence of simple coherent spatial structures and temporal chaos;

(ii) The potential for capturing the pde bifurcation sequence with truncated
modal systems; and

(iii) The potential for identifying coordinates for chaotic attractors.

These studies also provide directions for the rigorous mathematical analysis to support
the numerical work in the individual pde and ode systems, as well as to develop the
connections between the full and reduced systems. We discuss some current projects
in § 6.

The outline for the remainder of the paper is as follows:

Section 1 gives numerical bifurcations of the perturbed sine-Gordon equation; § 2
gives a truncated two-mode expansion in the nonlinear Schrodinger limit; § 3 gives
properties of the unperturbed modal equations; § 4 gives bifurcations of the perturbed
modal equations; and § 5 gives correlations between the infinite-dimensional and
reduced systems.

1. Numerical bifurcations of the perturbed sine-Gordon equation. We begin by
describing one particular experiment from our body of numerical studies (e.g., [1],
[2]) on the weakly damped, periodically forced, sine-Gordon equation

(1.1a) U, —u, +sinu = e[—au,+1 cos (wt)],

under periodic boundary conditions

(l-lb) u(x:—g, t):u(x=§’ t) for all t, A ‘ ’r

and with even spatial symmetry
u(x, t)=u(~x,t) forall t.

For the purpose of this paper we restrict attention to one bifurcation parameter T,
the amplitude of the external driver. The remaining parameters are fixed in the following
way:

(i) The linear damping coefficient ea is chosen very small:

(1.1¢) ea =.04;

(ii) The external driving frequency w is chosen near but less than 1:
(1.1d) w=1-¢e¢ =87,

(iii) The spatial period L is fixed at
(1.1e) L=12;
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and

(iv) The initial condition is given as a single-hump sine-Gordon breather localized

within the period.
With this parameter specification, we observe the following (Fig. 1) long-time
asymptotic states as a function of the bifurcation parameter £I'. The numerical methods
used to discretize this pde are discussed in the Appendix. These long-time states, or
“attractors,” are specified by their spatial structure and temporal behavior, with the
notation: K, denotes a spatially homogeneous component, of zero wavenumber; K,
denotes a period one component of wavenumber K,=27/L; K,® K, denotes the
nonlinear superposition of the two modes, etc. Locked implies a frequency-locked
state, oscillating at the driven frequency . Chaotic denotes a broad-banded frequency
spectrum.

This particular bifurcation sequence does not exhibit quasi periodicity prior to
chaos, which is a typical route to chaos in other parameter regimes [1], [2]. A more
exhaustive parameter study is required to resolve whether stable quasi-periodic attrac-
tors occur in this diagram. However, the model problem we present below indicates
that when a second frequency is excited at this parameter specification, the collective
quasi-periodic state is unstable and thus would not be observed numerically. This
structure is reflected in the pde chaotic dynamics in that the system intermittently
settles into weakly unstable quasi-periodic states, we illustrate this in Fig. 2, where
el'=.103.

We emphasize the spatial coherence coexisting with temporal intermittent chaos,
and moreover in a parameter range very near the integrable sine-Gordon pde. Fig.
2(a) displays the evolution of the spatial structure in time, beginning at ¢ = 50,000,
long after all transients have passed. Note the intermittent jumping between two weakly
unstable spatial structures, a “breather” (localized hump) peaked either at the center
or at the ends of the interval, with an intermediate passage through a flat state.

In order to quantify this spatial structure at each timestep ¢,, we use a recently
developed sine-Gordon spectral code to measure the exact sine-Gordon nonlinear
mode content in the field u°(x, t,). (See [2] for details.) For example, Fig. 3(a) is the
sine-Gordon spectrum for an exact K, sine-Gordon solution, i.e., a solution of the
pendulum: u =2sin ' [ksn(t; k)], 0< k<1, with frequency w = .87, and for a spatial
period L=12. These spectral curves are invariant under the exact sine-Gordon flow.
The endpoints of curves of spectrum are simple periodic spectra, and are closely related
to the action variables in the action-angle linearization of periodic sine-Gordon [6].
The other marked points, denoted by A or [J within bands of spectrum, are double
periodic spectra, and these label all closed (degenerate) degrees of freedom. In [3] we

} = } i } > "
0 .052 .059 070 .103 .150
spatial l Ko | Ko ® K1 ‘ Ko | Ko D K1 | KoD K] B Ky
structure
tempo‘ral [ frequency-locked to w | chaotic
behavior

F1G. 1. The pde bifurcation diagram, corresponding to variable I" with all remaining parameters fixed in
equations (1.1).



1514

BISHOP, FLESCH, FOREST, MCLAUGHLIN, AND OVERMAN

FiG. 2(a). Numerically computed solution ¢ = u®(x, t) of equation (1.1), 50,000 = ¢ = 50,600.

show that there is a 1:1 correspondence between pairs of fully complex (nonreal)
double points and linearized, exponentially unstable modes for a given sine-Gordon
N degree of freedom solution. Moreover, these local instabilities are reflected globally
in the isospectral set of the given solution by homoclinic components. For the example,
Fig. 3(a), the number of pairs of complex double points is given by the integer solutions
n of 2nmw/ L)€ (0, k*), where k is the elliptic modulus. Since L =12 here, we find that
n=1is the only solution. The exact K, sine-Gordon solution, depicted in Fig. 3(a),
with frequency as in (1.1d), on the interval of length L =12,

(i) Is linearly unstable, with order 1 growth rate;

(ii) Has homoclinic orbits on its sine-Gordon isospectral set, which are homo-

clinic as t —» £00 to this circle (one-torus) of constants in the phase space of L-periodic
functions of x; and
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F1G. 2(b). Corresponding to the numerically computed solution in Fig. 2(a), ¢ =u®(x, t,) (solid graph)
and ¢, = (3/31)u®(x, t,) (dotted graph), the sine-Gordon mode projection is numerically measured, with respect
to the complex spectral parameter A, at selected times t,. (Refer ahead to Fig. 3 for the A-spectral measurement
of three exact sine-Gordon low-mode solutions.) We note: (1) the passage of the perturbed flow from a “cross”
spectral projection to a ‘‘gap” spectral measurement; and (2) at each discrete time t,,, the spatial waveforms
are predominantly nonlinear K,® K, sine-Gordon waveforms.

(iii) This instability saturates nonlinearly, by arbitrary variation of initial condi-
tions, to the breathers in our following examples [3].

We emphasize that these are low-amplitude spatial structures, far from the ampli-
tude 7 associated with inverted rest states of the pendulum. These homoclinic orbits
of the full pde are thus quite distinct from the separatrices in the x-independent
pendulum equation.

The next example is an exact K,® K, sine-Gordon solution: a breather plus
nonzero mean. These are two such exact nonlinear states (Fig. 3(b)) reflecting the two
ways that the degeneracy due to the complex double point in Fig. 3(a) can break.
These nonlinear K@ K, states represent exact sine-Gordon solutions, with frequency
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FIG. 3. A schematic of the spatial structure for three exact sine-Gordon solutions at some discrete time t,,,
u(x, t,), together with the associated A-spectral measurement. We remark that for exact sine-Gordon flows, the
A-spectral projection is invariant. Fig. 3(a) depicts the spectrum of an x-independent pendulum solution which
is purely oscillatory in t, with frequency w = .87, on an x-interval of length L = 12. This pure K, state has one
spectral band on the circle of radius %, emanating from A =}, terminating at simple periodic eigenvalues
A =e*¥/16, where ¢ measures the maximum amplitude of u. For this K, solution, on an interval of length
L =12, there is one pair of complex conjugate double points which labels the modulational instability of this
x-independent solution in the K, mode direction. Figures 3(b) and 3(c) depict pure K,® K, spatial waveforms
of sine-Gordon, so-called *‘breather plus nonzero mean” states. The two spectral configurations represent the
two ways the complex double points of Fig. 3(a) may break into simple periodic points, opening up order 1
amplitude in the K, mode, and producing the two types of exact nonlinear K,® K, waveforms.
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o = .87 as in (1.1d), x-period L =12, and are linearly neutrally stable solutions of the
sine-Gordon equation (there are no fully complex double points). Under the unper-
turbed sine-Gordon dynamics, the spectral configurations in Figs. 3(a) and 3(b) remain
invariant.

Under a weakly perturbed flow such as (1.1), initial configurations such as in Fig.
3 will distort due to the perturbation. The endpoints of the spectral curves will modulate,
and moreover, the “closed” degrees of freedom will be opened. On short timescales,
the neutrally stable modes (associated with real double points) perturb only to the
order of the perturbation, whereas the O(1) unstable modes (associated to nonreal
double points) generate dramatic changes in spatial structure. Of interest here is which
modes resonate with significant amplitude on very long timescales, after all transients
have passed, and then how the dynamics of these modes proceed.

At each timestep in the perturbed flow (1.1), we measure the exact nonlinear
content in u°(x, t,), t, » 1. In this way we determine if the spatial structure is well
approximated:

(1) At a given instant ¢, »1 by a low degree of freedom exact sine-Gordon field,
and

(2) During the flow by a slow modulation through the low-dimensional nonlinear

modes, or if the mode content varies widely in a sine-Gordon projection.
Figure 2(b), corresponding to Fig. 2(a), indicates the sine-Gordon mode projection of
u°(x, t,), t, > 1, is uniformly very low-dimensional, even in this chaotic regime, and
that the energy transfer is predominantly within the nonlinear K, and K; modes. These
measurements quantify our spatial description of the bifurcation diagram in Fig. 1.

Remark. In the Fourier mode projection of u°(x, t,), a second harmonic cos ( K,x)
is required to accurately describe the weak instabilities of the (metastable) spatial
structures that comprise the chaotic attractor. We refer to [12] for this analysis, and
to [11] for a discussion of the truncated Fourier mode system that includes this second
harmonic.

The next figure, Fig. 4, is a phase-plane projection of (u, u,) at one location, x =0,
again for eI"=.103. Another indication of the chaotic dynamics is a broadband power
spectrum, which we omit here. (Refer to [1] and [2] for an exhaustive description of
the dynamical systems tools which we use to measure the frequency locked, quasi-
periodic, and chaotic attractors.)

We close this section with a summary description of the chaotic attractors for
(1.1). The dynamics settles into a region of phase space containing two nonlinear
K@ K, states (breather plus nonzero mean), with the breather localized in the center
of the interval, the other state with the breather translated by L/2 to the wings. Note
the discrete symmetry due to periodic boundary conditions and symmetric initial data.
Each state is ““unstable,” with weak O(e) instabilities due to the perturbation, and the
unstable flow out of each state is through a neighborhood of the flat K, state, landing
either back into the original K,® K, mode, or into the translated K,® K, state. The
intermediate K, state, however, is unstable (with order 1 growth rate) even in the
unperturbed flow, where it has homoclinic orbits associated to it. This apparent random
jumping process between the two Ky@® K, states begs to be identified as a Bernoulli
shift on two symbols. In this description the two symbols are identified with the
neighborhoods of the two K,@® K states, whereas the perturbed homoclinic structure
is responsible for the Bernoulli shift on these symbols. »

This phenomenon is the sine-Gordon low-amplitude analogue of the now classical
larger amplitude pendulum chaos: the exponentially unstable inverted state (u = =)
which under perturbation has equal likelihood of falling into either of the two states
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F1G. 4. The phase plane projection of (u,u,) at x=0, for the run in Fig. 2(a), (u®(0, t,), u; (0, 1,)),
t, € 50,000, 50,600}, with At=2.

(oscillatory or running) it separates. These two states are stable in the exact pendulum
dynamics, but develop O(e) instabilities due to the perturbation, and their perturbed
flow often passes randomly through the homoclinic configuration.

Our thesis is that the chaotic attractors of the weakly perturbed periodic sine-
Gordon system, e.g., (1.1), consist of low-dimensional metastable attracting states, e.g.,
the nonlinear K @ K, states of Fig. 2, together with intermediate states that are O(1)
unstable and represent homoclinic configurations in the integrable phase space. The
chaotic dynamics on these attractors is, we surmise, due to these perturbed homoclinic
configurations.

The derivation and analysis of perturbed, fully nonlinear, action-angle modes,
truncated on the low-dimensional structures associated to Figs. 2 and 3, are currently
under way [5]. As a preliminary step, we develop here a simple model problem that
captures some essential qualitative features of this route to chaos in the nearly integrable
pde. This model problem is achieved through a natural finite mode truncation on the
first two Fourier mode complex amplitudes.

We refer to [11] for a higher mode truncation which is aimed at more accurately
covering the chaotic attractors.

2. A truncated finite mode expansion in the nonlinear Schrodinger limit. For fre-
quencies near but less than 1, the weakly perturbed sine-Gordon flow (1.1) resonates
with low-amplitude “breatherlike” spatial modes, rather than kink-like modes which
can predominate for significantly lower w [10]. In this limit we easily derive a perturbed
nonlinear Schrodinger envelope equation as follows. Seek a solution of (1.1) in the
following form (recall w =.87 =1-¢a, (1.1d)):

(2.1a) u®=2Vew [B(X, T) e+ complex conjugate]+ O(¢),
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with

(2.1b) X=vV2e6x, T=cat

Then the slowly varying envelope B(X, T) satisfies Tt

(2.2) —iBr+ Bxx +(|B*-1)B=iaB+T. )
From (1.1) the scaled parameters become (approximately):

(2.3a) &=5€%~.154, Ly =12V2e6~6.12, ky =%Z—z1.025,

and the bifurcation parameter I is now

el

T 8(s0)?

We have achieved two things by reducing to this amplitude equation. First, we
preserve the perturbed integrable structure, since the unperturbed pde (2.2) with
& =0=0is the integrable nonlinear Schréodinger equation. Second, we factor out one
frequency, o of the driver. Thus, steady solutions of (2.2) correspond to frequency
locked solutions of (1.12), while T-periodic flows of (2.2), incommensurate with e,
correspond to quasi-periodic perturbed sine-Gordon solutions. Chaos in one system
is chaos in the other.

We now make a further approximation and truncation based on the predominant
K,® K, structure measured in Figs. 2 and 3 for the perturbed sine-Gordon flow. (A
similar truncation and an interesting numerical study appears in [9]. The primary
difference is our focus here on the role of homoclinic structures in the attractors and
the comparison with the perturbed pde.) We seek

]

(2.3b) ~2.67¢T.

2
(2.4) B(X, T)=c(T)+b(T) cos (kX), k=zf.
X
Inserting this ansatz into the perturbed NLS equation (2.2) and retaining cubic terms
in the complex Fourier amplitudes ¢(T), b(T) yields

—icr+(|c+YbP—1)c+1(cb* + c*b)b = ige +iT,

2.5
23 —iby+(|c|?+3|b)? — (1+ k)b + (cb*+ bc*) ¢ = iab.

Several remarks about this model four-dimensional dynamical system are appropri-
ate at this point.

Remark 1. This two-complex Fourier mode truncation is surely not expected to
yield quantitative agreement with the perturbed pde, although Fig. 3 suggests the two
mode K,® K, nonlinear truncations provide a very good approximation [5]. This
discrepancy in the linear versus nonlinear mode is apparent as we compare a sine-
Gordon breather K; mode with the Fourier K; mode (Fig. 5).

FI1G. 5. Comparison of a nonlinear K, breather mode (left) versus a linear K, Fourier mode (right).
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Thus, we view this ode system as a model problem and a preview of [5]. Moreover,
in [11] we discuss the inclusion of the K, Fourier mode into a three-complex mode
truncation.

Remark 2. However, this ansatz is capable of modeling some of the apparent
features of the perturbed sine-Gordon structure as discussed in § 1. In particular, recall
that the chaotic sine-Gordon dynamics (at éI'=.103, Fig. 3) reflect a competition
between a discrete number (here two K,® K;) of weakly unstable structures: one with
the breather in the center, the other with the breather localized at the ends of the
interval. These pde states are, equivalently, related by a half-period translation.
Moreover, the pde flow from one state to the other is through the flat K, state, which
has associated homoclinic orbits in the unperturbed phase space, whereas the unper-
turbed K@ K, states are neutrally stable in the absence of the perturbation and develop
weak instabilities at the onset of chaos.

Now consider the perturbed sine-Gordon solution u®, as modeled by this two
mode ansatz:

(2.6) u ~2Ved[(c(T)+b(T) cos (kX)) e + c.c]+ O(ed),

with ¢(T), b(T) governed by (2.5). These perturbed odes (2.5) admit the symmetry
(¢, b)>(c,—b), which is equivalent in u° to a translation by L/2. Moreover, this
symmetry implies that b = 0 is an invariant subspace, which for u* in (2.6) corresponds
to the flat intermediate structure. (The equivalences extend further as discussed in § 3.)

Remark 3. The truncated ansatz (2.6), with ¢, b governed by (2.5), is robust enough
to capture all three spectral configurations of Fig. 3, the K,® K, “gap” state, the
K@ K, “cross” state, and the intermediate K, state with complex double points and
associated homoclinic components, as we will see below. Therefore, this approximation
has the potential to flow between gap and cross (K,@® K;) spectral configurations by
passing through the homoclinic K, configuration. Recall from Fig. 2(b) and Remark
2 above that this is the spectral flow of the perturbed sine-Gordon equation.

3. Properties of the unperturbed modal equations. In our studies of the perturbed
sine-Gordon equation [1], [2], [5], we consistently aim to interpret the perturbed
system by projection into the phase space of the integrable sine-Gordon equation. Our
understanding of finite-dimensional invariant sets in the exact phase space is the
foundation of our studies of the perturbed problem. Consistent with this philosophy,
we now describe properties of the unperturbed modal system:

) —icr+ (P +3b*—1)c+3(ch*+ c*b)b =0, s
3.1
ibr+(|ePH3BP = (1+ k)b + (cb*+ c*b)c = 0.

Property 1 (integrable Hamiltonian structure). The two complex- (four real-)
dimensional system (3.1) is an integrable Hamiltonian system, with two real indepen-
dent integrals:

I=|cl+3b],
(3.2) ’ , -
H =3[c +|bPlef* +3]b[* —3(1+ k*)|b]” = |c|*+3(bc** + b**c?).
The system (3.1) can be placed in complex Hamiltonian form as follows. Let
gi=c, pi=c*, g.=b/V2, p,=b*/V2, so that the “‘energy” H takes the form

2

H(q, 92, p1, p2) =391 P1+2a:9.p1 P2 395 p3 — (1+ k%) g29,— . p1 +3(g3 03 + 43 p3).-
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Then Hamilton’s equations with this complex structure are

(:) - (? _ol)"cn”’

which are precisely equations (3.1} and their complex conjugates.
Property 2 (symmetries). The integrable odes (2.1) admit the following sym-
metries:

(3.3a) (i) (¢ b)>(—cb),
(3.3b) (i) (¢ b)—>(c, —b),
(3.3¢) (iii) (¢, b)>(e*®c, e**b) for any ¢ € R.

The reflection symmetries (i), (ii) yield two invariant planes: ¢ =0 and b =0. The
S' symmetry (iii) yields a circle of fixed points for each nontrivial fixed point.
Property 3 (sets of fixed points). The system (3.1) has three rings of fixed points:

(3.4a) Ring 1. (¢, b)=(e™,0), $€[0,27) in the b=0 invariant subspace;

Ring 2. (c,b)=(0,e"¢\/§(1+k2)>, ¢ €[0,27),

in the ¢ =0 invariant subspace;

L [1+2k* .. [2-K?
(3.4¢c) Ring 3. (c,b)=(e"”\/ s ,2e 4/ s ), éel0,27).

Remark. For larger lengths L> 12, another fixed-point ring exists [11].

The quadrature solution of these integrable equations is most easily affected by
the polar coordinate form of (3.1).

Property 4 (polar form of the unperturbed odes). Let c=Ce”, b=Be®, 6=
2(y—B); then (3.1) becomes

(3.4b)

35) C,+3CB*sin =0, Br—C?Bsin =0,
3.5
Or+(T+2k*)~3C*+2(1-2C* cos 6 =0.

For completeness, we also list
yr+C*—1+iB*(2+cos 8) =0,
Br+3B*+ C*(2+cos #)— (1+k*)=0.

By use of the integrals I and H, it is now easy from (3.5) to effect a complete
reduction to quadrature solutions of each choice I = I,, H = H,. These general formulas
are not the focus of this paper but will be presented elsewhere [4]. Some special cases
will be relevant here (see Property 6 below).

Property 5 (stability type for each ring of fixed points). The S' symmetry, together
with the fact that the amplitudes are constant when B =0 (Ring 1), or C =0 (Ring 2),
or # =0 (Ring 3), produce a double linearized eigenvalue of zero for each ring. The
linearized stability of these fixed points is therefore straightforward to compute; we find:

Ring 1. (¢, b)=(e',0) has a double zero ecigenvalue with associated eigenvectors

in the b =0 subspace, and a one-dimensional stable and unstable eigen-
space, with O(1) stable and unstable eigenvalues, £kv2—k*=1.
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Ring 2. (¢, b)=(0, e"V5(1+k?)) has a double zero eigenvalue with correspond-
ing eigenvectors in the ¢ = 0 subspace, and two purely imaginary, complex
conjugate eigenvalues, £iv3(4k*—1). These fixed points are purely center-
like.

Ring 3.

(c b)=(e“”\/1+2k2 2e*"’\/2_k2>
’ 5 7 15

has a double zero eigenvalue with corresponding eigenvectors in the 8 =0
subspace, and two purely imaginary eigenvalues +iv7|c||b|. These fixed
points are centers.

Property 6 (homoclinic orbits associated to fixed-point Ring 1). The unstable fixed
points on Ring 1, with ¢ =e", b=0, lie on the energy surface H =—1%, I =1. These
are the asymptotic states associated to heteroclinic orbits on this energy surface, which
correspond to the one-dimensional stable and unstable manifolds of each fixed point
on Ring 1.

Using the integrals I and H from (3.2), we find a convenient iniegral is

h=H-(I-D),

which can be manipulated to find
_2h+B’GB*+ K1)
- B(I-3B)

cos 6

Using this formula, the polar equations (3.5), and the values H=-1, I=1, h=0
appropriate to (¢ = e'®, b=0), we determine an effective oscillator equation for z = B*

2

-;—zzr+[—;—2(2—8k2)(7z—8(2—k2))] =h=0.
The familiar potential energy diagram below (Fig. 6), with energy level h =0, exhibits
the infinite-period behavior of z = B2:0 V32 -K)\0, where #, \u denote mono-
tonically increasing, decreasing behavior, respectively.

The remaining formulas for C, y, B are similarly derived [4]. There are also
additional orbits homoclinic to the closed curves nested around Ring 1 in the b=0
invariant subspace (see Property 8).

V(z)

b= ,,,,*--«.-«-.-,A/\QHZ

,,,,,,,

ia-k) 8K

FIG. 6. Potential energy diagram for z= B> =|bJ*.




CHAOS IN PERTURBED SINE-GORDON AND A MODEL SYSTEM 1523

Property 7 (connection between the ode fixed points and sine-Gordon solu-
tions). In the asymptotic representation (2.6) of sine-Gordon solutions, the above fixed
points of the unperturbed odes reflect the following solutions and their stability
properties.

Ring 1. u ~2/ed[ce™ +c* e, which corresponds to the K, flat pendulum
solution, frequency locked to the driver frequency w. The O(1) instability
of these fixed points in the unperturbed system reflects the O(1) instability
of the exact K, sine-Gordon solution (recall Fig. 3(a) and the surrounding
discussion). Moreover, the orbits homoclinic to Ring 1 reflect the sine-
Gordon solutions which are homoclinic to the pendulum solution with
frequency w = .87.

Ring 2. u~+e[b cos kX e™'+c.c.] corresponds to the pure K, mode, with a
zero-mean (K,) component, and with frequency of the driver. These
solutions exist for sine-Gordon, but are not observed in the perturbed
dynamics. This is presumably explained by the larger amplitude of this
Ring 2, |b|=+/8/3, relative to the other Rings 1, 3. These corresponding
solutions in the perturbed pde would then be expected to show up by
varying initial conditions with a significantly larger energy, or by driving
the system harder (see § 4).

Ring 3. u~+e[(c+bcos kX) e*'+ c.c.] corresponds to the K,® K, sine-Gordon
solution, consisting of the K, breather plus nonzero mean, locked at the
frequency w. These states are observed in the perturbed dynamics.
Moreover, the unperturbed pde stability type (neutrally stable) agrees
with that of the unperturbed odes.

In summary, the fixed-point Rings 1 and 3 in the unperturbed odes reflect
remarkably well the unperturbed K, and K@ K, sine-Gordon solutions, and moreover
maintain a parallel linearized instability and homoclinic orbit structure of the K state,
as well as the neutral stability of the K,@® K| states.

Below (§ 4) we discuss how the perturbation selects individual points from these
rings.

Property 8 (simple periodic orbits nested around the fixed-point rings). The sym-
metries of the unperturbed odes, Property 2, lead to a nesting of closed curves in the
subspaces containing Rings 1, 2, and 3. For example, in the invariant subspace b =0,
we find closed curves |C|=constant= C,, which yields the one-parameter family of
periodic solutions:

c=C,e' " T  C,=constant, b=0.
As Gy~ 1, these curves approach Ring 1 while the frequency goes to zero.

Similarly, in the C =0 invariant subspace there is a one-parameter family of
periodic solutions surrounding Ring 2:

c=0, b= Byexp (i(1+k*-3B)T).

In the 6 =0 subspace, which contains Ring 3, we find another one-parameter

family of closed curves corresponding to periodic solutions:
¢ =VIBI 1K exp (i1~ P~ ¥BY) T),
b= B, exp (i(1-3k*—¥B})T).

Note that these nested closed curves around Rings 1 and 3 are connected at the
periodic solution b =0, ¢ = (k/v2) exp (i(1—3k*)T). The Floquet stability analysis of
these one-parameter families of periodic solutions yields coupled Mathieu equations,
to be discussed elsewhere.
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4. Bifurcations of the perturbed modal equations. We now discuss how the above
properties of the integrable odes (3.1) reveal themselves in the bifurcation structure
and dynamics of equations (2.5). Recall that we fix & =.155, and consider the bifurca-
tions of (2.5) as the constant driver " is varied.

The following bifurcation curves (Fig. 7) were originally generated for us by Jolly
and Kevrekides using the code AUTO, and since then verified by us, while the linearized
eigenvalues and associated eigenvectors were independently computed along the curves
by Hyman using the CLAMS package.

We now discuss these bifurcation curves and the associated dynamics.

Property 1 (existence of fixed points as a function of ["). Branch OABFG is a
pure K, branch, consisting of steady states with b =0.

Branch BCD is a double K,@® K, branch, consisting of fixed points (¢, b) and
(¢, —b), with b # 0, ¢ # 0. (Recall from Remark 2 in § 2 that the perturbed system (2.5)
retains the reflection symmetry (c, b) > (¢, —b), so that all fixed points with b # 0 come
in pairs with equal I, norm.) The bifurcation point B corresponds both to the change
of stability of the K, branch of fixed points from one to two unstable dimensions and
to the beginning of the K,@® K, branch of fixed points.

Some features of this bifurcation diagram are found either analytically or by
simple perturbation theory arguments, as we now sketch.

Property 2 (explicit parameterization of the entire K, branch of fixed points). With
b =0, the fixed points of (2.5) satisfy, with ¢=¢,+ic,, @ =.155,

(3+c2~1)e, + de, =0,
(3+ci-1)c,—de,=T.

If we fix n=v¢i+c3=1, norm of (c,0), the equations (4.1) represent two orthogonal

(4.1)

L -2 norm of the solution

1.25 i — —

1.00 _.

0.75 _

0.50 _j

0.25 -

:
0 _ |

}
0.00 - : AN : . |
-1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

268 288 o N
9484 a bifurcation parameter Gamma =T

Bifurcation diagram, a=0.155=¢&

FI1G. 7. Bifurcation diagram of (2.5) as I" is varied.
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lines in the (c?, ¢3) plane. We then pick I" such that the two lines intersect on the circle
of radius n. This algorithm yields the inverse of the K, curve of Fig. 7, which is a nice
function:

(4.2) ‘ T(n)=nvé&>+(1-n>%
In this way, we analytically generate the K, curve OABFG, and calculate the turning
points A and F by setting i"(n) =0, which verifies the numerically generated curve.
Property 3 (perturbation calculations to describe the turning points in the bifurca-
tion branches). By a classical perturbative phase-locking condition, we reproduce the
qualitative multibranch structure of Fig. 7, identify these fixed-point branches as
phase-locked fixed points from the unperturbed fixed-point Rings 1, 3, and quantita-
tively capture the turning points or “bends” in the bifurcation curves.
First we compute how the unperturbed integral I varies in the presence of the
perturbed dynamics (2.5) (recall that & and I" are our rescaled small parameters):

~ 2 1 2| A
43) E:-ZQ[M +2|b|] 2 Re (¢)

- =-24&1 21 Re (¢).
Next we seek fixed points which are perturbations of Rings 1, 2, 3 in (3f1a)—(3.4c)
evaluate (4.3) on this ansatz, and demand that dI/dT vanishes to O(&, [')—which
selects the phase(s) of Rings 1, 2, 3 that “lock(s)” to the perturbation. This procedure
yields the following nonresonance or phase-locking conditions:
Ring 1. With c¢=e"+eAc, b=gAb, 0<e«1, phase-locking criterion: &+
I'cos ¢ =0. A
Ring 2. With c=¢Ac, b= e*Vi(1+ k%) +eAb, phase-locking criterion: dl,+
eI’ RE (Ac) =0, where RE ( )=real part ().

Ring 3. With
o [1+2K s [2-K
c=e" S +eAc, b=2¢e* T + eAb,

phase-locking criterion:
<7 +4k?

1+2k2
=0.

[43

)+f*2 cos ¢

This perturbation analysis yields the following conclusions (recall & =.155):

Ring 1. cos ¢ = —a/T, so this ring does not phase lock until I' = & (which precisely
yields the turning point F), and for I'>a exactly two phases are selected,
corresponding to the two branches FG and FB. (The stability of these
and other branches is discussed in the next property.)

Ring 2. If &, ¥= O(e), there are no solutions of the nonresonance condition
(&I, # 0). However, if & = O(¢&?), = O(e), then we find a balance in this
equation. This occurs when I= O(\/E ), which is outside the range of our
diagram and so will not be of interest here. (Referring back to § 3, Property
7, Ring 2, we now find these zero-mean solutions do not resonate with
the perturbation until the system is driven harder.)

Ring 3. The phase-locking condition yields U

cs¢—-—é7+4k2 [ 5
OSP=ETF 15 1+2k2

which correctly predicts the turning point C and the two emanating
branches.
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Property 4 (stability of the bifurcation branches). In the phase-locked branches
of Fig. 7, the upper branches FG and CD locally inherit the stability type of the
unperturbed Rings 1 and 3, respectively, while the lower branches FB and CB locally
pick up an additional weak unstable eigenvalue due to the perturbation. (These facts
are easily deduced perturbatively.)

The stability type of all branches in Fig. 7 is numerically computed, with the
following results. Let W), W} denote a k-dimensional stable or unstable manifold,
respectively. Then the following diagram indicates the stability type of each branch:
(recall that in dimension four, Wi(X,), W} (X,) for hyperbolic fixed points satisfy
k+1=4, so it suffices to list Wi(X,)):

Highlights. (1) The K, branch FG is the phase-locked continuation branch of
Ring 1, which maintains the one-dimensional unstable manifold character of the
homoclinic orbits to Ring 1 in the unperturbed problem. The FG branch, therefore,
is the perturbed ode signature of the homoclinic pde structures described earlier in § 1.

(2) The double K@ K, branch CD is the stable phase-locked continuation branch
of Ring 3, which corresponds in the perturbed pde to the phase-locked, stable, breather
plus nonzero mean (K,® K;) solutions.

(3) The point D on the K,® K, branch corresponds to the subcritical Hopf
bifurcation. At this value of I~ .268, the previously stable K,@® K, breather plus mean
solutions become two-dimensionally, weakly unstable due to the perturbation. As we
discuss below, just after this Hopf bifurcation the perturbed system goes chaotic.

Since this Hopf bifurcation is subcritical, the associated periodic orbits of this
bifurcation phenomenon are unstable, and these are not observed in our numerical
simulations. This fact is quite consistent with the pde bifurcation structure (Fig. 1 and
remarks just below it), where in this parameter regime we did not see quasi periodicity

L -2 norm of the solution e
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F1G. 8. Bifurcation diagram with stability type of each branch of fixed points.
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prior to chaos. This model suggests that when the second frequency is generated by
Hopf bifurcation in the pde, it is unstable in this specific parameter regime.

Property 5 (global connections between fixed points: before and after the Hopf
bifurcation). We have numerically determined the global connections of the unstable
manifolds of fixed points at given stress parameter values [". These fixed-point connec-
tions were numerically computed in two ways, first with the package UMFUT of
Doedel. We then independently verified the connections using the ode package LSODE.
The method we use is to initialize the ode system with the coordinates of the unstable
fixed points plus a small (0(102—107%)) increment in the direction of the unstable
eigenvector(s). The orbit then converges to the indicated fixed point. The only numeri-
cally sensitive connections are saddle-saddle connections, for which we impose tighter
error bounds on the ode code and more careful resolution of the unstabie manifold
direction(s) to select initial conditions for the connecting orbit. The saddle-saddle
connections are confirmed by restriction to the invariant subspace b =0, where the
connections become saddle-stable node, which are numerically stable.

The interesting and relevant connections for this discussion are those for I
preceding and following the Hopf bifurcation at '~ .268. We indicate these schemati-
cally in Fig. 9.

ko Branch FG —_— / K \/

K";: +.,3
Double k,@ «, Branch CD — o1 Ko
xo Branch FB —_— \ K5 /
Double x,® «, Branch CB — Ko Kgibe
ko Branch OA —_— \l K; /

F1G. 9. Global fixed-point connections .155 <1< .268.

These connections are quite expected from the pde. For example, the large
amplitude unstable mean (K ;") is unstable to the nearest energy stable state, which
is either the stable breather plus mean (K 7’) or its equal energy translate (K, 7). Thus,
the unstable manifold of K¢* lands in one direction at K47, in the other at Kg7.
Another example is the unstable breather plus mean K3"*“. Along perturbations which
decrease energy, the state is unstable to the stable flat configuration (Kg) since there
is not enough energy to sustain the spatial structure. If energy is increased, however,
the state is unstable to the higher energy breather plus mean Kgy, which is stable.

After the Hopf bifurcation ['=.268, all that changes in Fig. 9 is that the stable
K3 fixed points become two-dimensionally, weakly unstable,

after £2u

+35
B N
K(),l Hopf KO,]
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We observe numerically, however, that the unstable trajectories out of K3*, K2, and
K5 (which previously, Fig. 9, converges to K;+) now flow very near to K o or
K;iP*, dominated by the O(1) attracting directions (stable dimension two), but slowly
build up the weak instabilities, leave this neighborhood, then quickly land back in a
neighborhood of either K" or K53*. The dynamics of these odes depicts classic
intermittent chaos: the “laminar” behavior is characterized by settling into a neighbor-
hood of Kg > or K 0, > and the intermittent chaotic bursts are associated with the
flight out of the neighborhood of one and subsequent landing back into either of them.

In Fig. 10 we exhibit the time evolution for a selected orbit of the perturbed odes
(2.5) at I' = .275, which corresponds exactly to the eI’ =.103 pde numerical experiments
shown in § 1, Figs. 2 and 3. The initial condition of Fig. 10 is taken along the unstable
manifold nearby Kg3i°*, which is directly into the conjectured strange attractor. For
consistency, we also continue this numerical run to t=10,000 (corresponding to
t~70,000 in the pde time units), and the run remained chaotic. The leading Lyapunov
number was computed to be 27,

Motivated by our pde study in § 1 and the identification of homoclinic K, structures
in the chaotic dynamics, we now seek the analogue of homoclinic crossings in these
model odes. We have so far identified a parallel structure between this model problem
and the pde: the upper K" fixed point corresponds to the K,, order 1 unstable flat
state, associated to the unperturbed homoclinic components; the K" fixed points
correspond to breather plus nonzero mean states, phase shifted by a half period, which
are neutrally stable in the unperturbed equation, but which develop weak instabilities
due to the perturbation when I'=.268. _

The perturbed pde as evidenced in Figs. 2(a) and 2(b), exhibits intermittent chaos
characterized by a passage out of a “laminar” K,® K, state, through the homoclinic
K, state, and then back into another weakly unstable K,® K| state. In this perturbed
ode, this behavior corresponds to the schematic loop of Fig. 11.

In summary, our numerical studies of the ode and pde clearly suggest that the
onset of observable chaos may be described by a jumping process between two weakly
unstable coherent states. (These two states are related by a discrete symmetry, (c, b) -
(¢, —b) in the ode, and in the pde by a half-period translation from a state localized
in the center or the ends of the spatial interval.) In the unperturbed ode and pde systems,
homoclinic orbits have been identified which are homoclinic in the pde to x-indepen-
dent, order 1 unstable periodic solutions while in the ode these orbits are homoclinic
to the ring of fixed points, [¢|=1, b=0. In each system, these orbits are homoclinic
to degenerate solutions that intermediate the unperturbed spatially localized solutions.
Moreover, in both the perturbed ode and pde systems, we have numerically correlated
the jumping process with unperturbed homoclinic crossings.

It is therefore clear to us that a Melnikov-type calculation is appropriate, centered
on the unperturbed homoclinic orbits. The goal of this analysis is to establish our
conjecture for the observable chaotic dynamics: the existence of horseshoes in the
perturbed dynamics, which rigorously identifies the jumping process in the ode and
pde as topologically conjugate to a Bernoulli shift on two symbols. (The two symbols
represent the states localized in the center and wings of the interval.)

A precise dynamical systems mechanism for the observable chaos has been
formulated in collaboration with Wiggins and Kovacic. The ode scenario is based on
existence of a four-dimensional Silnikov-like structure (Guckenheimer and Holmes
[13, § 6.5], and Wiggins [14, § 3.2]); the rigorous proof is in progress by Wiggins and
Kovacic and will appear in the thesis of Kovacic. The extension of this rigorous analysis
to the pde is in progress [15].
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Fi1G. 11. Schematic loop of behavior on the chaotic attractor.
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This surmised behavior creates a loop as sketched in Fig. 11. We test this conjecture
numerically in the following way.

Starting at K37 or K;i", we use the computed unstable eigenvectors to locally
span W5(K3"). We then numerically shoot from these fixed points K along the
unstable manifold, integrate the perturbed flow, and numerically monitor the distance
to all fixed points at this value of I". These distance functions are defined as follows
relative to the labeling in Fig. 12: DIS j = distance of the computed orbit to fixed point
Jj, etc. These distance functions DIS 1-DIS 7 are provided below (Fig. 13) for one of
the representative unstable eigendirections out of K§*“, which coincides with the time
evolution provided in Fig. 10. ’

Conclusion. The numerical evidence verifies the jumping process between neigh-
borhoods of Kgi** and K,i"*, with intermediate passages nearby Ky* during the
jumps. Note that the DIS 2 and DIS 3 functions oscillate near zero as the orbit settles
into a neighborhood of Kgi"* or K", respectively.

K" = fixed point 1
K= fixed point 2 ) Koi*=fixed point 3
K3 =fixed point 4 g s

Ky =fixed point 5 T K" =fixed point 6

K;=fixed point 7

FIG. 12. For "= 275, the seven fixed points are assigned a numerical label: 1 is assigned to Ky 2is
assigned to K3, etc.

Moreover, in the bursts out of these “laminar” states, the orbit gets relatively close
to 1=K y* (occasionally very close) as indicated in the graph of DIS 1, whereas the
orbit is always O(1) distance from fixed points 4, 5, 6, and 7. Thus, as in the pde
simulations of § 1, the perturbed ode apparently goes chaotic coincidentally with
random passages through or near the homoclinic structures of the unperturbed problem.

One final measurement of this thesis is the ode analogue of our sine-Gordon
spectral projection of the perturbed pde (Fig. 2(b)). The homoclinic unperturbed
fixed-point Ring 1 has the integral dependence H =3I*—I,sothat h=H —(3I°~1)=0
on the homoclinic orbit (recall Property 6 of § 3). We now seek to measure the projection
of the perturbed flow, relative to this unperturbed homoclinic configuration, by checking
for zero crossings of A. The graph of h is provided along with the distance functions
in Fig. 13.

5. Correlations between the infinite-dimensional and reduced systems. So far, we
have measured homoclinic crossings in two distinct ways: in the perturbed pde by
graphing the exact sine-Gordon spectrum of u® at each timestep, and in the ode by
graphing h=H —(3I*—1) and checking for zero crossings. As a final test of this
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FI1G. 14. The ode and pde homoclinic diagnostics are computed together from an orbit (¢c(1,), b(t,)) on
the chaotic atiractor. The top graph is the ode diagnostic, h= H — (31> = I), which we check for zero crossings,
with several discrete times labeled. From the values (c(t,), b(1,)) at these discrete times, the approximate
perturbed sine-Gordon solution, u®(x, t,,), is computed from formula (2.1a). Then the corresponding sine-Gordon
spectral measurement of this approximate u® is computed. We then seek the correlation between zero crossings
of the ode diagnostic h and passage through the homoclinic spectral configuration of the pde.
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homoclinic phenomenon, we combine the two measurements. We take ¢(T,), b(T,)
during the flow that generates h, reconstruct the perturbed sine-Gordon solution u°
by the approximation, (2.1a), and then compute the sine-Gordon spectral measurement
of u®. When h goes through a zero crossing, does the perturbed sine-Gordon field u®
pass through a homoclinic spectral configuration? The results appear in Fig. 14.
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FiG. 14—continued
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The agreement is quite good. When the odes pass from h>0 to h<0, the
sine-Gordon projection goes from a “gap” to a “cross” configuration. The agreement
is not one-to-one when the odes are very close to the exact homoclinic structure (h = 0),
but this is expected due to the approximation by linear Fourier modes.

6. Concluding remarks. Based on the combination of’

(i) Our geometric understanding of the integrable sine-Gordon phase space, with
singular components homoclinic to tori, and

(ii) The numerically verified presence of these singular components in the chaotic
dynamics of the weakly perturbed system,
we are led to a research program to coordinatize these chaotic attractors and model
the dynamics with associated amplitude equations. This paper represents the simplest
example in the small amplitude limit of this general program. This two complex
amplitude truncation has already yielded excellent correlation with the homoclinic
structure that it shares with the perturbed integrable pde. Moreover, this “physically
derived” four-dimensional dynamical system is a fertile example from the pure dynami-
cal systems point of view. A Melnikov-type analysis based on the homoclinic orbits
has now been developed for this model problem [4a], [4b], and will appear in the
thesis of Kovacic.

The next step in this program is to truncate on the fully nonlinear sine-Gordon
or nonlinear Schrodinger modes. Thus far, we have derived the averaged finite ampli-
tude modal equations for systems (1.1) and (2.2), and have explicit formulas for the
K,® K, truncation relevant for the study presented here. (This analysis is discussed
in [7].) The averaged equations are equivalent to the order ¢ rate of change for each
sine-Gordon integral in the presence of the perturbation, i.e., dH;/ dt = ¢f;, j€ Z. These
are precisely the quantities required in a Melnikov analysis in higher dimensions.

To capture the dynamics of the chaotic attractors, we must couple the rapid phases
(the angles) to the averaged equations (the actions) described above. These perturbed
action-angle equations will be reported in [5]. The next nontrivial step is to numerically
analyze these truncated dynamical systems. Since these nonlinear coordinates are
naturally defined on Riemann surfaces (see [3], [5]-[7]), we are currently developing
efficient algorithms for these computations [8].

Appendix. Most of the numerical runs were done using a second-order in time,
fourth-order in space discretization of the sine-Gordon pde (1.1). The u,, term was
discretized by fourth-order central differences with Ax =0.20 and the u, and u,, terms
were discretized by second-order central differences with A7 = 0.02 (i.e., this is a leapfrog
scheme). The initial timestep was calculated by Taylor series, namely,

u(x, t=A1)=u(x, 0)+u(x, 0)At+iu,(x, 0)(At)’

and the u, term was replaced by using (1.1a). Selected runs were rechecked by a
fourth-order Runge-Kutta method in time using eighth-order central differences in
space (and the same Ax and At as above) on the pde to make sure that the long-time
evolution of the run was as indicated by the lower-order method. In addition the
boundaries between periodic and chaotic runs in time were determined to three decimal
places by this higher-order code.
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