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ABSTRACT.

We extend the iterative method suggested by
Hochstrasser et al. by using spectral collocation meth-
ods coupled with path-following techniques. The result-
ing scheme is very accurate and efficient, even for narrow
pulses, and makes it possible to calculate a whole fam-
ily of solitary wave solutions as a parameter (such as the
velocity of the pulse) is varied.

I. INTRODUCTION

In a recent paper [4], Hochstrasser et al. have put for-
ward an iterative scheme based on Fourier transforms
for the calculation of narrow solitary wave excitations
on atomic chains. We suggest here modifications and ex-
tensions to their method based on spectral-collocation [1]
and path-following [8] techniques. The advantages of this
approach are twofold: (a) the linearly convergent itera-
tion scheme of [4] is replaced by a quadratically conver-
gent iteration, and (b) the use of continuation methods
enable a whole family of solutions to be quickly gener-
ated, as an external parameter such as the soliton velocity
is varied. As a by-product of our analysis, we also present
numerical evidence that the spectral methods give super-
algebraic convergence [1] as the number of spatial points
is increased.

For conciseness we will treat here only the two cases
treated in detail by [4], namely the Toda lattice and the
lattice with potential V (u) = 1

2 (u2 + βu4), with β > 0.
However the methods we describe can be extended in a
straightforward way to models with other nonlinear po-
tentials, to coupled discrete lattice models such as those
described by Pnevmatikos et al. [6], to other discrete sys-
tems supporting solitary waves such as myelinated nerve
axons [7], or indeed to many continuous systems. Work
on such applications is underway and will be reported
elsewhere.

As discussed in [4], we consider a nonlinear monotonic
chain of unit mass particles with nearest neighbour cou-

plings, leading to a Lagrangian of the form

L =
∑

n

{1
2
α̇2

n − V (αn+1 − αn)} (1)

where αn is the displacement of the nth particle from
its equilibrium position. If the relative displacement of
the nth bond is defined to be un = αn+1 − αn, then the
equation of motion becomes

ün − {V ′(un+1)− 2V ′(un) + V ′(un−1)} = 0. (2)

We are interested in travelling waves, i.e. in solutions
of the form un(t) = u(n− vt) = u(z). With this ansatz,
(2) becomes

v2 d2u(z)
dz2

= F (z + 1)− 2F (z) + F (z − 1) (3)

with F (z) = V ′{u(z)}. By multiplying both sides by z2

and integrating by parts, it is straightforward to show
that

v2

∫ ∞

−∞
u(z)dz =

∫ ∞

−∞
F (z)dz (4)

providing u(z) = o(1/z) and uz(z) = o(1/z2) as |z| → ∞.
This identity can also be obtained as the q → 0 limit of
the Fourier Transform of (3), as shown in [4], and turns
out to be very useful.

II. NUMERICAL METHODS

In [4], solutions of (3) are obtained by taking Fourier
Transforms and solving the resulting equation in q space
by a linear iteration modified by the constraint (4). This
procedure, when it converges, gives one of the infinite-
dimensional solitary wave solutions of (2), but there is
no way of proscribing the velocity in advance. By vary-
ing the starting point of the iterations, a number of so-
lutions for different v can be obtained, and a solution for
a proscribed v can then be obtained by interpolation.

Our technique, although also based on spectral meth-
ods, uses a quadratically convergent Newton-Raphson it-
eration, together with continuation methods to generate
a whole path of solutions as a function of v. Any solutions
required for specific values of v can quickly be generated
to high accuracy. Similar techniques for the study of sta-
tionary solutions of single and coupled reaction diffusion
equations have been proposed in [2, 3].

To be specific, we approximate the exact solution u(z)
by a finite cosine series over a finite interval L.

u(z) ≈ U(z) =
n−1∑
j=0

cjφj(z), (5)

where φj(z) = cos(2πjz/L). This will give us solutions
of (3) with period L: in the large L limit we expect to
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get good approximations to solitary waves which have
infinite period.

The unknown coefficients are then fixed by inserting
(5) into (3) and requiring that the resulting equations be
satisfied on the n−1 collocation points zi = iL/2(n−1),
with i = 0, . . . , n− 2. This gives the equations

−(2πv/L)2
n−1∑
j=0

j2cjφj(zi) = F (U(zi + 1))− 2F (U(zi)) + F (U(zi − 1)),(6)

i = 0, . . . , n− 2.

In addition we require one further equation: this is given
by the trapezoidal rule approximation to (4) over the set
of points {zi, i = 0, . . . , n− 1}, where zn−1 = L/2:

v2c0 =
1
2
F (z0)+F (z1)+ . . .+F (zn−2)+

1
2
F (zn−1). (7)

Although these are mostly standard spectral collocation
techniques, some further explanation is necessary. The
cosine functions are chosen because the solution u(z) can
be chosen to be symmetric about the point z = 0. The
collocation points are chosen to lie in [0, L/2) because the
cosines are symmetric about L/2. Finally the constraint
equation (4) is chosen to pick out the “solitary” wave
family of solutions from the two dimensional sheet of pe-
riodic solutions of (3). Without this constraint equation
we may converge to another solution which does not sat-
isfy the requirement that u(z) → 0 as |z| → ∞. The
trapezoidal rule approximation to (4) has high accuracy
for periodic functions [5].

The set of equations (6-7) are nonlinear in the un-
knowns cj and are soved by a Newton-Raphson itera-
tion. This requires a suitable starting guess, which can
be obtained in a number of ways, i.e. exact solutions
(where known), exact solutions of continuum approxi-
mations, numerical solutions of nearby solutions in pa-
rameter space. The continuation method works by using
the last of these in an Euler-type predictor scheme [8].
Usually convergence to the solutions of (6-7) to machine
accuracy at each step is reached in three or four itera-
tions.

III. RESULTS

We first tested the scheme on the Toda lattice [9].
Here V (u) = a(1− exp(−bu)), and analytic solutions are
known for both the periodic case and the infinite line. For
a given solution to (3), other solutions can be constructed
by the transformation u → u′ + u0, v

2 → (v′)2 exp(bu0),
where u0 is a constant. From the exact solutions on the
periodic lattice [9], solutions satisfying the constraint (4)
can be constructed by this transformation, to test the
numerical scheme. In Fig. 1 we show graphs of the er-
rors in two cases, (a) L = 3, k2 = 0.9, corresponding to
v ≈ 1.55268, and (b) L = 10, k2 = 0.9999, corresponding
to v ≈ 1.257097. Here L = λ is the period of the lattice,
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FIG. 1: Curves of maximum error as a function of n, for the
cases discussed in the text.

and k is the modulus of the dn functions appearing in
the analytic solution (eqn. (2.3.1) in [9]). In both cases
we took a = b = 1. The error is defined to be the max-
imum absolute error, i.e. maxz∈[0,L] |uexact(z) − U(z)| .
For the L = 3 case we need only 9 points to achieve 8 dec-
imal place accuracy, whereas for the L = 10 case we can
achieve the same accuracy with 21 points. The graph of
the errors clearly suggest superalgebraic convergence, i.e.
convergence faster than any power of 1/n [1]. Next we
consider the lattice with potential V (u) = 1

2 (u2 + βu4).
In this case only solutions to the continuum approxima-
tion are available [4]. The error curves for a solution in
the case L = 10, β = 1, v = 2 are also shown in Fig. 1
as curve (c). Here we define the “exact” solution as the
numerical solution with a large value of n. The rate of
convergence is similar to the Toda case. In Fig. 2 we
show the path of a family of solutions in this case as v
is varied, where we plot the height of the solitary wave
against velocity. This curve and the resulting solutions
take only a few seconds to calculate on a Sun Sparcsta-
tion 1. The inset in Fig. 2 shows some of the resulting
waveforms at various points on this curve.
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FIG. 2: Path of travelling pulse solutions as a function of v,
as discussed in the text, and corresponding wave forms.
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