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The inverse spectral transform for integrable nonlinear ordinary and partial differential equations (such as the Toda
lattice, Korteweg—de Vries, sine-Gordon and nonlinear Schrodinger equations) provides explicit algorithms to generate
exact solutions under periodic or quasiperiodic boundary conditions. These oscillatory wavetrains may be prescribed a priori
to consist of a nonlinear superposition of N phases, 0,(x,1) =x;x + w;t + 0;’, j=1,...,N, where the wave is 2-periodic
independently in each phase. This paper exhibits the numerical implementation of the inverse spectral solution of the
sine-Gordon equation. The general construction is outlined and then implemented for N.= 1, 2, and 3. We compute: (1) the
exact theta-function solutions, (2) the Floquet spectrum of x-periodic solutions, (3) the labelling of linearized instabilities of
N-phase solutions in terms of spectral data, and (4) the linearized growth rate in each unstable mode. The associated
surfaces gy(x,t) are displayed to illustrate a variety of spatial and dynamical phenomena in the oscillatory solution space of
this integrable system.

1. Introduction

In this paper we are concerned with explicit computation of exact oscillatory solutions of the
completely integrable sine-Gordon partial differential equation (PDE). The method of solution, the
inverse spectral transform, will be briefly summarized here to the extent necessary to explain
the algorithms for computation of these solutions and of their salient physical properties (spatial
wavenumbers, temporal frequencies and linearized instabilities).

The sine-Gordon equation is one of many completely integrable systems, including ODESs such as the
Toda lattice [1], and PDEs such as the Korteweg—de Vries (KdV) and nonlinear Schrodinger (NLS)
equations [2-7]. The solution of each integrable PDE involves the spectral theory of a special linear
differential operator with variable coeflicients, where the Cauchy data of the PDE determines the
variable coefficients of this operator. Boundary conditions become very important in this solution
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technique, since the spatial boundary conditions imposed on the PDE and its Cauchy data are likewise
imposed on the linear operator. The solution technique and classes of solutions of the nonlinear PDE
are therefore limited to those boundary conditions for which one can control the spectrum of this linear
variable coeflicient differential operator. The two principal successes have occurred with square inte-
grable boundary conditions on the infinite line and periodic boundary conditions on a finite interval.
(There are other examples which will not be discussed here.)

For decaying boundary conditions on the infinite line, the PDE solution technique is called inverse
scattering theory, which has produced the well-known N-soliton solutions. For oscillatory solutions (either
periodic or quasiperiodic) which are bounded as |x| — « but not square integrable on the line, the
technique is called inverse spectral theory (IST) and has produced the class of N-phase wavetrains (the
analog of N solitons per finite period). For periodic boundary conditions, the IST solution involves
the Floquet theory of a linear differential operator with periodic coeflicients, as we will summarize
below.

Whereas N-soliton formulas are given by rational combinations of exponential functions, oscillatory
N-phase wavetrains are represented in terms of Riemann theta functions. The simple functional form of
N solitons has led to a wide range of scientific applications. In contrast, the mathematical and
computational complexities of computing integrable oscillatory wavetrains, explained in the text below,
have hindered the use of these solutions in applications. A few exceptions exist: special N-phase
solutions of the NLS equation have been computed by Tracy [4] to display modulational instabilities in
the neighborhood of plane waves; Segur and coworkers [8] have computed two-phase solutions of the
Kadomstev—-Petviashvili equation which were then fitted to doubly periodic surface waves in shallow
water. Also, Boyd and coworkers [9] have analyzed techniques to sum theta series and perturbation
methods to replace direct theta function computations.

The present paper outlines the numerical implementation of the inverse spectral algorithm for
oscillatory solutions of the sine-Gordon equation. The codes described here generate the class of N-phase
quasiperiodic wavetrains for small N (1, 2 and 3). Special care must be taken to handle the subclass of
periodic solutions. We will first describe the inverse spectral solution algorithm; then we will generate
specific 1-, 2-, and 3-phase solutions. We will list only those ingredients of inverse spectral theory which
are essential for computing these wavetrains, for characterizing their physical wavenumbers and frequen-
cies, and for determining the linearized stability of periodic solutions.

These computations are intended, firstly, to show how soliton wavetrains can be systematically computed
and displayed and to show where the essential problems lie. Secondly, we plan to use these codes in
conjunction with our studies of the perturbed sine-Gordon equation under periodic boundary conditions
[10, 11]. To cite two examples: we are currently applying the codes of this paper to predict existence or
nonexistence of frequency and phase-locked periodic solutions of the damped and periodically driven
sine-Gordon PDE; also, we plan to simulate the modulation equations for perturbed multiphase
sine-Gordon wavetrains [12].

We will now describe, in general terms, the direct and inverse spectral transform for the periodic
sine-Gordon (s-G) equation. The direct spectral transform (DST) is the nonlinear analog of the periodic
Fourier transform for linear evolutionary PDEs: the s-G Cauchy data, (g(x,0),4,(x,0)), x €0, L], is
resolved with respect to a nonstandard set of spatial modes. Unlike the fixed orthogonal basis of linear
Fourier modes, the s-G nonlinear mode set consists of the class of “N-phase waveforms”, to be
computed in this paper. This set of N-phase wavefunctions is known to be complete in L2[0, P] for the

integrable KdV example, and almost surely is complete in the sine-Gordon example but a rigorous proof
remains to be provided.
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The linear Fourier transform of a function f(x) provides the amplitude in each Fourier mode on
[0, L]. One can then approximate f(x) by a finite sum of Fourier components, where the coefficients in
this sum are the Fourier transform data. For sine-Gordon, the DST in principle yields an approximation
of the Cauchy data (g(x,0),q,(x,0)), x€[0, L], by a nonlinear waveform which is the analog of N
solitons per finite period. The data of the DST transform, however, is the spectrum of a linear
differential operator in x with periodic coeflicients determined by the PDE Cauchy data.

We remark that the DST has been successfully implemented in studies of the periodic Toda lattice
[13], the periodic KdV equation [14], and the perturbed periodic sine-Gordon [15] and NLS [16]
equations. In these studies, the DST is applied to measure the nonlinear mode content in the solution at
each time step, and then to interpret the perturbed solution in terms of this integrable mode basis. The
reconstruction of the approximate “N-phase spatial waveform” from this DST spectral data requires the
inverse spectral transform, which is not as simple as a linear superposition in the linear Fourier analog.
Rather, the N-phase waveforms involve theta functions of N variables, and this paper effects their
explicit computation beginning with DST data. This reconstruction by IST of the integrable solution was
not relevant to the studies in refs. [13-16]; rather, the important issues in those studies related to
whether a given integrable mode approximation at one time step was robust and uniform in future time
steps.

For the purpose of PDE dynamics, the Fourier transform for linear PDEs with spatially independent
coefficients and the DST for integrable nonlinear PDEs have an important role. For such linear PDEs, if
the Cauchy data f(x) has exactly N nonzero Fourier amplitudes, then the PDE solution evolves as a
time-dependent linear sum of those N Fourier modes. Moreover, if f(x) is only approximated by N
Fourier modes, and if there are no instabilities in the remaining Fourier modes, then the linear PDE
solution corresponding to this data is approximated by an N-mode sum for all future times. With regard
to the periodic DST for an integrable PDE, the time evolution of Cauchy data in the form of an N-phase
spatial waveform is an exact N-phase solution whose explicit x, ¢ dependence is known. Moreover, if this
N-phase periodic wavetrain does not have any linearized instabilities, then Cauchy data which is
approximately an N-phase spatial waveform will evolve by the sine-Gordon flow as an approximate
N-phase wavetrain.

We now present the two linear differential operators in x and ¢ (the so-called Lax pair) upon which
the inverse spectral transform solution of sine-Gordon is based. The initial data is presumed periodic in
x of fixed period L,

q(x,0) = (a(x,0),4,(x,0)), x€[0,L], (1.1a)
a(x+L,0) = g(x,0) mod 2, | ‘ o (1.1b)

q,(x+L,0)=¢q,(x,0), : : \ (1.1¢)
and periodic boundary conditions are imposed for all time,
(g(x+L,t),q(x+L,t))=(q(x,t)mod2w,q,(x,¢)). (1.2)

The appropriate phase or function space & for the periodic sine-Gordon PDE consists of an 1.2 X L2
completion of all function pairs (g, g, Xx) € C0, L] x C0, L] which satisfy (1.2).
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For such (q,q,) € %), with ¢ = (i, 4,)", the spatial linear operator .2* is given by

-1y d i 0 1 1 [elv 0 1 0
o[t Ydebosalt Yol 2l-ld -
where E € C is the spectral parameter. We remark that #*) is non-selfadjoint, a fact which makes the
spectrum of . complex and which is ultimately responsible for many of the s-G solution properties
(e.g., instabilities) and problems (e.g., characterizing real solutions) that are not shared by integrable
PDESs solved through selfadjoint spectral theory. The corresponding temporal operator .#'? is given by

TH6VE \0 e 0

The compatibility condition ¢, = ¢, holds for simultaneous eigenfunctions of .Z® and £ if and
only if the coefficients (q, g,) satisfy the sine-Gordon equation,

/<'>w=[((1’ arratara) o) -eEls ) () ?)]w=0. (1.4)

4y~ 4yx T sing=0. | ' (1.5)

Thus, the Lax pair (.2, .Z®) carries the sine-Gordon PDE as a compatibility condition, the essential
fact which is exploited to solve the s-G PDE.

The DST for the periodic sine-Gordon equation is a map from periodic Cauchy data q(x,0), x €[0, L],
eq. (1.1), to the set of periodic and antiperiodic eigenvalues of #*), which we shall call the periodic

spectrum %)(q), and where g(x,0) = (g(x), g,(x)) determine the variable coefficients of _#©, (1.3). By
definition,

3P(g) = (E,€ClAO(x; E=E) =0, (x+ L; E,) = +¢(x; E)},
DST: g(x) = (q(x),q,(x)) = 2" (q). | (1.6)

Complete integrability of the periodic sine-Gordon equation is embodied in the following two remarkable
facts [5, 7I:

Fact 1. 3®(q(x,0)) = S®(q(x,t)) if q(x,t) solves the sine-Gordon PDE, i.e., the periodic spectrum of
any initial data ¢(x,0) is invariant as this data evolves according to the sine-Gordon flow (1.5).

Fact 2. A complete set of (countably infinite) conserved quantities for the periodic s-G PDE is provided
by 3FX(q(x,t)). For example, the conserved sine-Gordon energy and momentum functionals, as well as
the remaining complete list of higher-order integrals, are functions of 3(q).

Therefore, at least in principle, the DST yields a complete nonlinear mode decomposition for arbitrary
initial data (1.1). By analogy, sine-Gordon infinite-line scattering theory employs -~ with “potentials”
(g(x),q,(x)) in a weighted subspace of L2(R) X L*(R). The direct scattering transform then consists of
the discrete spectrum of .2, which precisely determines the soliton composition of g(x), and of the
continuous spectrum of _# ), which describes the nonsoliton radiation composition of g{x).

Given these spectral measurements of Cauchy data, the main interest for dynamics is to determine the
nonlinear mode content for future times ¢ > 0. The interest in solitons, for example, is based on their
dynamical interactions, and the ability to write down precise functional forms for the N-soliton solutions.
In this direction, the infinite-line DST produces a precise characterization of pure N-soliton waveforms.
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The Cauchy data g(x,0), in an appropriate subspace of L*(R) X L*(R), evolves as a pure N-soliton
solution of s-G if and only if the spectrum of .2 is purely discrete, with N discrete eigenvalues, and
the reflection coefficient vanishes identically.

The inverse scattering transform (IST) on the infinite-line is 2 map from the scattering data of Z®
(i.e., the spectrum, discrete and continuous) to the coefficients (g(x), g,(x)); the IST map is the inverse
of the DST map, as the name implies. Moreover, the infinite-line IST solution method employs the linear
time-dependent operator .2, (1.4), to explicitly time-advance q(x,0) to g(x, t).

In particular, the N-soliton solutions are generated as follows. From DST, one knows to select a pure
discrete spectrum of N eigenvalues of .Z*) with zero reflection coefficient, and from IST one has a
precise formula for g(x, t) for all ¢ > 0, which is guaranteed to evolve as an N-soliton waveform since the
DST data is invariant in time. These infinite-line details may be found in any of the soliton textbooks.

For this paper, we will implement the analogous construction of N-soliton oscillatory wavetrains for
N =1,2,3. The periodic DST provides the spectral data 3‘"(g(x,0)) that uniquely specifies N-soliton
oscillatory waveforms. The initial data is guaranteed to evolve as an N-mode nonlinear wavetrain. The
periodic IST solution then yields an explicit formula for these N-soliton wavetrains. This information is
compiled in section 3.

In both the infinite-line and periodic cases, the inverse spectral solution is summarized by the
following diagram:

q(x,0) ——3(q(x,0))

(1) DST
j(x)
)| £®
IST (3)
q(x, ) W E(q(x, t)

We will not need the full details of this diagram. Rather, we will implement the result of steps (2) and
(3) for special choices of periodic spectrum 2®(g(x,0)) which correspond to oscillatory N-soliton
wavetrains for N =1,2,3.

The remainder of the paper is organized as follows. In section 2 we recall the classical construction of
one-soliton wavetrains (single-phase sine-Gordon solutions) by Jacobi elliptic functions. In section 3 we
summarize the IST formula for N-soliton wavetrains (N-phase sine-Gordon solutions). In section 4 we
summarize the IST ingredients necessary to determine all linearized instabilities of periodic N-phase
wavetrains. Then in sections 5, 6, and 7 we numerically compute the IST solutions and their stability
properties for N = 1,2,3. The final section 8 displays infinite-period (soliton) limits of two-phase waves
and the one-phase limit of two-phase waves.

2. Single-phase solutions by classical analysis
We begin with the classical construction of one-phase solutions, which does not require IST, in order

to illustrate the necessary ingredients for the general IST algorithm in a familiar setting.
The single-phase periodic solutions of the sine-Gordon equation,

Qe —dex T sing=0 (21)
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may be constructed by reduction to a traveling wave ode,

a(x,1) = a,(6) = q,(x + w1) | 2w
with 2m-periodicity in the phase or angfe 0, |

q(0+27w) =¢g,(6)(mod2). ' ‘ (2.2b)

Each solution of this form yields, perhaps after rescaling, a pendulum equation. We begin with the
simple case of (2.2a) where k = 0, corresponding to x-independent pendulum solutions of the PDE (2.1),

q, +sing=0. ‘ (2.3a)
The classical analysis of this integrable ODE yields the corﬁplete family of solutions,
q(t) =2sin"!(ksn(t—t,;k)), real t-period = 4K(k), (2.3b)

parametrized by the modulus k of the Jacobi elliptic function sn and by the phase shift ¢,. The temporal
period involves the complete elliptic integral of the first kind, K(k), and yields the explicit nonlinear
amplitude—frequency relation. The modulus & is an invariant of (2.3a) and is related to the conserved
total energy H by

k?=1H=1(1g>+1-cosq)>0. (2.3¢)

Upshot. The behavior of solutions within this complete family is classified in terms of the “nonlinear
mode parameter” k as follows:

q(t) is purely oscillatory if 0 <k%< 1,
- q(t) = darctan(e’ ') + 1 is separatrix-like if k*=1,
g(1) is periodic mod 21 if k2> 1.

Remarks. Within the two-dimensional ODE, (2.3a), the single invariant (or “nonlinear mode parameter’’)
k is sufficient to label all qualitative behavior, including the linearized stability of the degenerate
solutions g =0, + w corresponding to the critical level sets k?=0,1, respectively. As solutions of the
sine-Gordon PDE with x-periodic boundary conditions (1.2), additional information (section 4) is
required to determine the stability of each member of the family (2.3b). For this family, the linearized
stability analysis is again a classical calculation [17], in which the linearized growth rate in the nth
Fourier mode of wavenumber «, = 2nw/L requires analysis of a Lamé equation for the amplitude of
each mode of wavenumber «,, in the L-periodic function space.

As we will discuss and calculate later, the IST parametrization of the family (2.3b) provides
closed-form solutions equivalent to (2.3b) and provides computable linearized growth rate formulas. The
IST results, however, generalize this classical single-phase example to any N-phase, x-periodic sine-
Gordon solution {17].
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Returning to the single-phase traveling waves, (2.2a), (2.2b), the full parametrization of these solutions
is deduced from the pendulum solutions (2.3b),

q,(0) =q,(kx +ot) = 25in‘1[k sn(—szLk)[H(x,t) + 60];k)], - | (2.2¢)

where 0(x,t) = kx + wt is the 2w-periodic phase or angle, U = w /« is the phase velocity,

T x+ Ut

2K(K) Jur—1 | (2.2d)

For this discussion we will take U2 > 1; U% < 1 corresponds to a rescaled inverted pendulum.

0(x,t) =

Upshot. The amplitudes of single-phase sine-Gordon solutions are determined by the invariant mode
parameter k, which then fixes the wavenumber and frequency of the wavetrain in terms of “period

information” on the underlying elliptic Riemann surface, that is, in terms of the complete elliptic integral
K(k).

From (2.2d), we find the spatial period L is given by

L=4K(k)WU? -1, : o | (2.4)

from which we deduce:

Fact 3. Under x-periodic boundary conditions on an interval of fixed length L, there is a two-parameter
family of periodic traveling waves of x-period L. The two parameters are the invariant elliptic modulus
k, which fixes the total energy, and an arbitrary phase shift 6, € [0,2m).

For practical purposes, these one-phase solutions may be explicitly computed using standard algo-
rithms for Jacobi elliptic functions and elliptic integrals.

Remark. Tt is clear from the above formulas that any two of the three parameters {«,w, H=2k?%
specifies the remaining one. As a result, we conclude that the space of all one-phase periodic s-G
wavetrains of fixed x period L, k =2w/L = constant, has real dimension two. This two-dimensional
space of L-periodic solutions may be parametrized by varying the frequency w (which then fixes the
energy), or by varying the energy H (which then fixes the frequency). Each solution for fixed «, w, H has
a free translational parameter 6.

We now describe the inverse spectral transform (IST), which reproduces this traveling wave family as
well as all N-phase sine-Gordon wavetrains.

3. Inverse spectral construction of N-phase sine-Gordon wavetrains

The classical construction of one-phase periodic solutions of section 2 can be summarized in the
following algorithm.
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Step 1. The spatial length L is given and fixed. The “input data” is the conserved energy H, which
determines the elliptic modulus, k?= 1H.

Step 2. Compute K(k), the complete elliptic integral of the first kind with modulus .

Step 3. With L, k, K(k) now prescribed, construct the Jacobi elliptic function sn(z; k), evaluated along
the real axis in the complex z-plane according to formula (2.2¢). (This step guarantees the solution below
will be real-valued and bounded.)

Step 4. For any 8,€[0,2w), the formula (2.2¢) yields a computable, single-phase solution of the
sine-Gordon equation with prescribed x-period and energy.

The IST construction is similar. The essential differences are:

Step 1. The IST invariants, which are the input data, consist of the elements of the conserved periodic
spectrum, 3V, eq. (1.6), computed from the linear operator .2, (1.3).

Step 2. For single-phase wavetrains, in the classical construction the invariant elliptic modulus & defines
an underlying Riemann surface % of genus one. The complete elliptic integral K(k) is simply one of two
possible independent loop integrals (called periods) of differentials “of the first kind” (i.e., holomorphic
differentials). For genus one Riemann surfaces, there is only one independent holomorphic differential,
and for the purposes of integration, only two independent closed curves on . Thus, there are only two
pieces of holomorphic period data: K(k) is one, and the remaining holomorphic period is required to
construct the elliptic function sn(z; k).

In the IST construction, at step 2, we will compute all period information of holomorphic differentials
on the underlying Riemann surface. Just as above, the input invariants of IST, 3®, will explicitly define
this Riemann surface, and determine all period data.

Step 3. Given this complete set of holomorphic period data, the Riemann theta function is uniquely
defined, and may then be computed. For single-phase solutions, the theta function is a function of one
complex variable; for N-phase wavetrains, the appropriate theta function depends on N complex
variables. The single-phase solutions g(x,t) depend on x and ¢ only through the linear phase
0 =kx+wt+ 8% and ¢(8) is 2m-periodic (mod2) in 4. The corresponding N-phase solutions depend
on x and ¢ only through N linear phases, 6,=«;x +w;t + 6/, and q(6,,...,6y) is 2mw-periodic
independently in each 6. The real-valued and bounded N-phase solutions require the theta function
evaluations for real x and ¢ along specified directions in CV [6].

Step 4. For N-phase solutions, we may take any 0}) €[0,2w), j=1,...,N, and a precise formula is
numerically evaluated to generate the N-phase wavetrain whose physical characteristics (wavenumbers

and frequencies) are explicitly known and determined from the input data 3.

Given this preview, we now describe the IST construction of N-phase sine-Gordon wavetrains. We
begin with some key ingredients and facts; the details may be found in refs. [5, 6].
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3.1. Associated linear spectral problem: .y =0

The first ingredient is the spectrum of the linear operator .2, eq. (1.3), with spectral parameter E,
periodic coefficients q(x), eq. (1.1), and eigenfunction (x; E;q). The general analysis of linear
operators with periodic coefficients is called Floquet theory. With eigenfunctions @(x; E; q) considered
for x € (— o, + ), it follows

Fact 4. The entire Floquet spectrum, 3, of .2 is a continuous spectrum,
def
P {E€ClLY¢(x;E;q) =0, ¥(x) is bounded for all x € R}. ‘ (3.1)

For second-order differential operators, such as .Z®, the fundamental object of Floquet theory is the
Floquet discriminant, ACE;q). (Briefly, A(E;q) is the trace of the transfer matrix for .Z®¢ =0.) In
terms of the discriminant, the spectrum 3 of . is succinctly characterized by

Fact 5.
3={EeC|-2<A(E;q) < +2). | | | (3.2)

Thus, the Floquet spectrum of .#*) consists entirely of the closure of curves in the complex E plane
along which A(E; q) is real-valued and bounded between —2 and +2. This characterization of 3, will
prove quite useful in our numerical computations later (section 4, with regard to linearized instability).
Moreover, this formula (3.2) is precisely what is computed in the numerical DST calculations cited
earlier [13-16].

The set of periodic (antiperiodic) eigenvalues of .2, 3® in eq. (1.6), is likewise simply characterized
by the discriminant:

Fact 6.
P) _ ) = : ,
3® ={E;eCIA(E;; q) = +2}. (3.3)
From facts 5 and 6, it is easy to deduce that the endpoints of curves of continuous spectrum are special
periodic (antiperiodic) eigenvalues which are not critical points of A(E). Generically, these terminal
points of curves of continuous spectrum are simple periodic or antiperiodic eigenvalues, defined by
3 = the simple periodic, antiperiodic spectrum of _#*)

= {E; e CIA(E;) = +2, A(E;) #0}. | (34)

Fact 7. The simple periodic, antiperiodic spectrum, 3 in eq. (3.4), determines the entire Floquet
spectrum, 3 in eq. (3.2).

Fact 7 is critical to the construction of this paper. We shall only need to pose the simple periodic
spectrum 2 as our “input data”, from which the corresponding sine-Gordon solution q(x,t) is specified.
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(Recall the diagram at the end of section 1. The IST solution is a map from 3, which is determined
uniquely by 3¢, to g(x,1).) ‘

The IST ingredients and facts to be provided in the remainder of this section are:

(a) symmetries and properties of 3®, in facts 8, 9;

(b) a precise characterization of those 3® = 3¢ which correspond to N-phase s-G solutions, in section
3.2;

(c) the Riemann surface % defined by 3§ and all necessary period information on %, in section 3.3,
step 2;

(d) the theta function representation of g,(x,t)=gq,(6,,...,6,) corresponding to the prescribed
simple periodic spectrum X%, in section 3.3, steps 3 and 4.

Fact 8. The entire positive real axis in the complex E plane is continuous spectrum, and E =0, are
limit points of positive real sequences in 2 /2, with

—2<A(E) < +2 forall0<E <w. (3.5)

It follows immediately from fact 8 that all E; € 2® N R* must be critical points of A(E): A(E;) = +2,
and the first nonvanishing derivative of A at E=E; must be even, A(E)=...=A%"(E)=0,
A(zf)(Ej) # 0 for some j>1. (Otherwise, there must be “gaps” in the continuous spectrum on R*,
contrary to fact 8.) All periodic and antiperiodic eigenvalues E ; for which A( Ej) also has zero derivatives
up to order k=1at E;, A(E)= ... = 4% (E}) =0, A*NE;) # 0,k > 2, are called kth-order multiple
(anti) periodic eigenvalues. Generically, the multiple points in 2® are double points, EY, and we denote
the set of all double (anti) periodic eigenvalues by 39,

S@ = {Ef‘e CIA(E}) = +2, A’(Ejd) =0, A”(Ef) + 0}. ‘ , (3.6)

In reference to fact 8, E =0 and « are in fact limit points of countably infinite positive real sequences in

3,

Remark. The non-real elements of 3, which are determined by 3© (fact 7), play a fundamental role in
characterizing all possible instabilities of the periodic sine-Gordon solution determined by 3. We
elaborate on this connection in section 4.

Fact 9. The simple (anti) periodic spectrum 3 consists of pairs, E, j—1* E,;, which either are negative
real or occur in complex conjugate pairs, the asterisk denotes the complex conjugate,

3O = {(Eyj_y, Eyj)|Egj o1 <Epj<0o0r Efy 1 =Eyj, By, #Ey}. (3.7)

Fact 10. The main geometric distinction between simple periodic points E; € 3® and double periodic
points Ef € 3@ is that curves of continuous spectrum terminate at E, € 3 whereas all double periodic
points Ef are embedded inside curves of spectrum. (Isolated double points E{ € R~ may occur.)

Remark. In' addition to E = 0, (fact 8), the elements of g(s) yield endpoints of curves of continuous
spectrum for the operator _# ). Additional terminal points of spectral curves occur at all odd order
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multiple (anti) periodic points of order k > 3, but the corresponding Riemann surfaces are singular. For
this reason, we shall assume that 0,% and elements of 3 are the only endpoints of curves of spectrum

for L™,

With this general information, we can now proceed to the specific choices of 2© which lead to
N-phase wavetrains g(x, ).

3.2, N-phase inverse spectral solutions: general properties

It is a remarkable fact that N-phase s-G wavetrains are specified by those =, (3.7), consisting of N
pairs of elements.

Theorem 3.1. Suppose the linear differential operator ., eq. (1.3), has a simple periodic spectrum,
3 eq. (3.4), consisting of exactly N < o distinct pairs,

3O0=38 ={E,,...,E)N| Ey;_ <E,;<0o0r Ef_,; =E,, E; all distinct}. (3.8)

Then there exist real coefficients (g(x,1),q,(x,1)) of .Z® that: (a) satisfy the sine-Gordon PDE (1.5),
(b) satisfy the x-periodic boundary conditions (1.2) with fixed period L, and (c) may be explicitly
reconstructed from %§ in the form of an N-phase wavetrain,

a(x,t;2%) =an(8y,...,0y), (3.9a)
0 . .

0, =x;x+wit+6), 6)<[0,2w), (3.9b)

’qN(el,...,aj+2w,...,eN)=qN(01,...,ej,...,0N) (mod2m) (3.9¢)

-~ k;j=2wn;/L, j=1,...,N, forsomen;€Z, ' (3.9d)

where the wavenumbers «; and frequencies w;, j =1,..., N, are explicit functions of 0.
Remark. The explicit formulas for «;, w;, j=1,..., N, and g,(x,t), are given below in section 3.3.

Remark. The set 3¢, (3.8), has real dimension 2N. For a given fixed period L, however, the periodicity
constraints (3.9d) place N real conditions on X%, so that the subsets of 3 corresponding to fixed period
L have real dimension N. ’

The corresponding family of N-phase solutions g(x, t; 2§) of x-period L are in general quasiperiodic
in ¢z, since the N frequencies w;, j =1,..., N, are in general incommensurate. This L-periodic family is
parametrized either by the N-dimensional L-periodic subsets of 3§ or by the N frequencies w,,..., o N
Each member of this family, corresponding to fixed w;,...,®, for example, also depends on N arbitrary
phases 87 €[0,m), j=1,...,N.

Caution. For arbitrary sets %, (3.8), which fail to satisfy the periodicity constraints (3.9d), then 39 is
not a bona fide periodic spectrum of .. Nonetheless, the construction outlined below generates an
N-phase s-G wavetrain which is quasiperiodic in x and ¢. A fundamental obstruction in the IST solution
method arises when one demands periodicity in x of period L for N > 2. In effect, one must search the
2N-dimensional space of all 3§, (3.8), for the N-dimensional subspace of 3¢ which satisfies the
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N-periodicity constraints (3.9d). As we will display below, these constraints (3.9d), K].(Eﬁf,)) =2mwn;/L,
j=1,..., N, for every choice {n,,...,ny} of N integers, consist of N transcendental equations in 2N

variables. Each fixed set {n,,...,n,} corresponds to one N-dimensional component of L-periodic
N-phase solutions and the union of all N-dimensional subsets 3¢ corresponding to fixed {n,,...,ny} is

undoubtedly dense in the 2 N-dimensional space of all 3%, (3.8).

While the situation may seem hopeless, in section 6 we shall illustrate how to exploit symmetries in 39
which guarantee periodicity when N = 2. In this way, we shall be able to pose IST input data, 2§_,, which
guarantees periodicity in x with either n, = +n,=1 or n; =1, n,=0 in (3.9d). All other periodic
subsets of %§’ corresponding to a fixed choice k;, =n,2w/L, k, =n,2%w/L, n;, n, € Z, may be individu-
ally determined through intensive numerical calculations. We provide one such example for n, =1,
n, =2 in section 6. In section 7 we give some three-phase examples. For N > 3 the calculation seems
formidable except through special symmetries.

Remark. As mentioned above in the previous remark, the need to search the N-dimensional subspace of
R2N defined by the fixed length conditions (3.9d) is the crucial obstruction to the IST algorithm. An
appealing possibility exists for generating connected components of 3 for fixed length L. The
x-periodic N-phase modulation equations of the perturbed sine-Gordon equation [12] preserve spatial
length. These ODEs are flows on 3£, whose ratios are independent of the perturbation. Thus we may be
able to use one L-periodic element of 2§ (corresponding to fixed ny,...,ny in (3.9d)) as initial data in
the modulation ODEs and then numerically integrate to find additional L-periodic elements of 3.

Remark. There is no fundamental obstruction if one is content with N-phase wavetrains that are
quasiperiodic in x and t. The IST construction described below applies for any choice of 3§, (3.8), and
yields an N-phase s-G solution quasiperiodic in x and ¢. The real 2 N-dimensional family 2§ is explicitly
related to the set {Kj,wj, j=1,..., N} of real wavenumbers and frequencies via the transcendental
formulas (3.21).

Remark. The solutions (3.9), and more explicitly (3.19) below, may not represent all L-periodic functions
of x with a prescribed simple periodic spectrum 3§, (3.8), satisfying the fixed period constraints (3.9d).
There may be additional s-G solutions §,, with the same %§ which are L-periodic in x but depend upon
a finite number of additional degrees of freedom, and where g, is either “homoclinic” or oscillatory as a
function of ¢ in each additional L-periodic spatial mode. (Refer to ref. [17] for details.) These
homoclinic degrees of freedom exist for each linear instability of the ¢-quasiperiodic, x-periodic solution
dy» (3.9). While we will not compute homoclinic solutions in this paper, we will detect their existence in
section 4 and then near-homoclinic limits are illustrated in section 7.

3.3. N-phase inverse spectral solutions: explicitly construction from 3

The algorithm parallels steps 1-4 of the classical single-phase construction listed at the start of
section 3.

Step 1. Choose the fixed spatial length L, and choose the simple periodic spéctrum

9 ={Ejj=1,....2N|Ey;_; <Ej;<Oor Ef;_, = E,}.
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i
!
e

Fig. 1. Canonical a and b cycles on Z.

(We assume that 3§ meets the fixed period constraints (3.9d). These constraints will be verified in
step 3.)

Step 2. Compute all period information for differentials of the first kind on the hyperelliptic Riemann surface
K determined by 3.

Define a Riemann surface % of genus N from 2§ as follows:

2N '
R= {(E,R(E))]RZ(E)=E]T[(E—EJ}. (3.10)

The simple periodic, antiperiodic eigenvalues E;, j=1,...,2N, plus 0,, are the branch points of Z.
The branch cuts and choice of canonical basis of closed one-cycles on %, {aj, bj}j’il, are depicted in fig.
1. (This choice conforms to ref. [6].) The solid paths indicate the upper sheet of % while the dashed
paths indicate the lower sheet. The thick dotted curves indicate the branch cuts.

A basis of differentials of the first kind, or holomorphic differentials, is

. Ek—ldE .
b= R(E) k=1,...,N. (3.11)

The period information for {¢,} consists of the 2N 2 integrals around the basis {a i bj}j}i1 of closed cycles
on %,

{gé_¢k,¢li}¢k;j,k=1,...,1v}. (3.12)

This period information is computed as follows. We define a normalized basis of holomorphic
differentials, {¢)}Y. |,

dE
R(E)’

N .
¥ = Z CijEN_j

j=1

i=1,...,N, (3.13)
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where the N2 normalization constants C, ; are uniquely specified by the N2 conditions

@ u=08,=0 fori#k or 1 fori=k, ik=1,.,N. (3.13b)
ay

The N column vectors of a, periods of ¥ = (i,,...,¥,)7, by (3.13b), consist of the unit orthogonal
vectors in CV,

e, =¢ v, | \ (3.13¢)
(er); =8 ' j : (3.13d)

The “period matrix” (or Riemann matrix), By, of # is defined by
B,.j=9§7.¢,.. , | | (3.14a)
The columns of B are denoted by

B = 9%./,. . (3.14b)

f

The normalized period matrix B has two important properties:
(i) B is symmetric,

B,=B.. | (3.152)
(ii) The imaginary part of B is positive definite,
(Im(BYV,V)>0 forV#0. ' (3.15b)

Upshot. The complete holomorphic period information (i.e., a complete set of periods for a basis of
holomorphic differentials) is contained in {C;;, B, j},{"j=1, which are explicit functions of the branch points
(EPN, = 3§, |

Step 3. Construct the Riemann theta function of N variables, ©(z; B), from the N X N period matrix B on
the Riemann surface #, (3.10).

ij?

The Riemann theta function, @(z§ B), is an entire functioﬁ of N complex variables z € CV constructed
from the period matrix B, (3.14), on % by the formula
O(z;B)= Y explim({Bk, k) +2(z,k))]. | (3.16)
kezV | ’

The values of @ in one fundamental domain (a parallelopiped in C¥ spanned by e,,..., ey, B,..., By)
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suffice to give values on all of CV by virtue of the automorphic (“periodicity”) properties [18]:

O(z+A, ,;B)=exp[—im((Bm,m) +2(z,m))] 6(z; B), (3.17a)

n,m?

where A, , is any lattice element

PN
3
3

[
™M=z

ne,+mB;, nme7z. ‘ (3.17b)
4 . ‘

In turn, the formulas (3.16), (3.17) indicate that ratios of theta functions are the basis for meromorphic
functions on C" with period Ay o (3.17b). Thus ratios of theta functions are meromorphic functions on
the Jacobian of %2, Jac(.%), defined by

zeJac(R) =CV/A, A={ey,...,ey,B,,...By}. (3.18)

Remark. Since Im(B) is positive definite, (3.15b), the definition (3.16) indicates absolute convergence of
this multiple Fourier series.

Step 4. Compute the N-phase theta function solution of sine-Gordon with the prescribed spectrum 3.

The explicit N-phase theta-function solutions g,(x,t) of the sine-Gordon equation are [6]

0*(I(x,t) +%;B)

t) =il , 31
qN(x7 ) 1in @z(l(x,t);B) ( 93)
where
Lo(1,... 1)eR", | (3.19b)

B is the N X N period matrix on %, (3.14), [ is the complex N-phase vector linear in x and ¢ whose
entries, modulo phase shifts and constant term, are fixed by 3% = {E};",

(_ 1)m+1CjN i
16y/T13VE,

-1)"¢;
L(x,0) = ~2i||Cpy + c,1+()7’” t]+19. (3.19¢)
16y/TI?VE,

The integer m =0 or 1 is related to the strict or mod 2w periodicity in x of g, (see the last remark of
this section), the complex phase shifts l]‘-) will be detailed below, eq. (3.23), and the C,, are the
holomorphic normalization constants on %, (3.13).

We emphasize here that, except for the discrete choice m = 0 or 1 and the complex phase shifts l,‘-’, the
N-phase formula (3.19) specifies gy(x, ) uniquely as a function of the spectral parameters {E}?Y) = 3.
The freedom of choice of m and [, appears below.

The real physical wavenumbers «; and frequencies w;, and thereby the real phases 6, j=1,..., N,
and phase shifts 87, are deduced from (3.19) by symmetries on . inherited from the symmetries of 3§,
(3.8):

E,, | <E,;<0 or EX=E,;,_,. (3.20a)
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With the a;, b; cycles as depicted in fig. 1, it follows that [6]

Im(C,) =0 Vi,j, B -  (3.20)
Re(B,) =0, i#], O (3.200)
Re(B,)=0 if E;;_,<E,;<0, Re(B,)=3 if Ef_=E,,. | (3.20d)

The symmetries imply, from (3.19c),
Re(I(x,t) —1,)=0. (3.20e)

These properties provide a basis for the real s-G flows, I(x, t) — I, with coefficients in R, where the basis
elements are in the span of the period lattice A. The real coefficients in this expansion yield the real
angles:

N ¢
l(x7t) _IO= Z ﬁfp L R ) o ! (3213)
j=1
0,(x,t) =K;x+wt, T P T . (3.21b)
fi=B; ifE,,_,;<E,;<0, fi=¢,—2B;, ifES_=E,. : | 1 (3.21¢)

If we let Fy, n=1[f ... fy], then the real angles, wavenumbers and frequencies are explicitly given by

0=2wF(1-1,), : ‘ 5 (3.21d)

. (_1)m+lCN
k=47iF ! C + —F|, (3.21e)

' 16yTIYE,

: (-1D"cy
w=4miF[c, + — 2= |, (3.21f)

16/ TIVE,

where

(€);=Cj, (Cy)j=Cjy. (3.21g)

From the symmetries (3.20), it follows that the Jf; are purely imaginary, C;,Cy are real, and thus the
phase 8, wavenumbers «, and frequencies e are real. The periodicity properties of g, (x, t), (3.19), with
respect to the phases @ are [6]

an(01s...,0,+27,...,0y) =qy(6y,...,6,,...,0y) | i Ef_ =E,,
=qn(01,..,6;,...,0y) 27 if E,;_, <E,; <0. (3.22)
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The final ingredient in this algorithm is the constant vector [,. The proper choice of /; which ensures
that g,(x, ¢) is real-valued and bounded for real x and ¢ is [6]

Re[(ly);] =0 if Ef_y=E,;, Re[(ly);]=xi if Ey_ <Ey;<0, (3.23a)

N i
Im[l,]= Y f.0), 62<[0,27w), k=1,...,N, : S (3.23b)
k=1 !

where the constants 02, k=1,..., N are the N real phase shifts.

Remark. From (3.22), (3.23a) each complex conjugate pair E¥,_; =FE,; in 3 corresponds to a strictly
periodic phase, 6,, or “breather” degree of freedom, whereas each negative real pair E,;_; <E,; <0 in
3§ corresponds to a “kink” degree of freedom (g, increases by 2 as 8, increases by 2) if Re(ly); = 3
and an “antikink” mode (g, decreases by 27 as 6, increases by 2m) if Re(l,), = — §.

Remark. The discrete parameter, m =0 or 1, in the N-phase solution formulas (3.19¢), (3.21e), (3.21f)
reflects a discrete symmetry of the sine-Gordon equation,

(q’xat) _)(q+'n-’t7x)’

in which the roles of x and ¢ are reversed. Note that the operators 2, @, (1.3), (1.4), are
interchanged by this transformation. For the more general class of solutions g, quasiperiodic in x and t,
each choice of m may be taken with an arbitrary 3¢ subject only to the constraints (3.20a). For
x-periodic solutions of fixed period L, one must pick the “charge” m, which fixes ¥ and w by (3.21e),
(3.21f) then search the 2N-dimensional space 253)={Ej}fN, satisfying (3.20a), for elements of the
N-dimensional subspace defined by (3.9d), k = n 27 /L, for each n € Z". Either choice of m may yield a
valid simple periodic spectrum 3§ of (1.3).

Before proceeding to numerically implement the ingredients and steps outlined above, we shall
describe in section 4 those ingredients computed from the simple periodic spectrum 2§ which are
necessary to label and compute all linearized instabilities of the x-periodic, N-phase solution g,
determined by X{).

4. Nonlinear mode labelling via Hochstadt’s formula for the Floquet discriminant

An N-phase L-periodic solution g,(x,?) consists of N interacting nonlinear spatial modes; each
phase with wavenumber «; = n; 21 /L represents one element of the function space % (1) defined below
eq. (1.2), for which g, has nonzero projection. Since % * is infinite-dimensional, there are infinitely
many directions in % ‘%) for which g, has zero projection. Whereas the N pairs of simple periodic
eigenvalues label the N “open” degrees of freedom of g,, the « — N “closed” or inactive degrees of
freedom in the solution g, € & ) are explicitly labelled by the pairs of double periodic eigenvalues of
(1.3), E/. Refer to ref. [17] for rigorous details of this section. The double periodic spectrum, 3@ s
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defined from the Floquet discriminant of (1.3) by (3.6),
3@={Ef e CIA(E]) = +2, A(E}) =0, 4(E]) # 0}. (4.1)

Heuristically, each double periodic eigenvalue should be thought of as a pair of simple periodic spectra
which have coalesced thereby restricting a potentially active mode.

In the linearized stability analysis of g,(x,¢), it is shown in ref. [17] that g, is linearly unstable to
small perturbations in & ) of wavenumber K, only if the corresponding pth pair of double periodic
eigenvalues, Egp,l, Egp, is nonreal. Thus, to determine the number of linearly unstable modes in &
associated to the solution q,, one only has to find the number of pairs of complex conjugate double periodic
eigenvalues and compute the corresponding growth rates.

The calculation of non-real double. periodic eigenvalues and the corresponding growth rates is now
outlined. ,

The simple periodic spectrum 3 = {E;}>" explicitly determines the double periodic spectrum (in
fact, the entire continuous spectrum of (1.3)) by Hochstadt’s formula [2]

A(E;qy) =A(E;3P) = 2cos(L / Eﬂ‘ﬁ"), | ' | (4.2)
E, :

where E, is one of the simple periodic eigenvalues, L is the x-period length, and 0§ is the following
meromorphic differential on % uniquely specified by < [17]:

m TN
1 (-1)"YIII'E; \ 4E
() — _ — N+1 __ p(x)FN _ Y-1€3) 2R
2= -5 (E BWEN — ... — BWE T FR(E)” (4.3a)
¢ 0P=0, k=1,...,N, (4.3b)
wy cycle
where [6]
|
peeycle ~a, ~2b, if Ef_ | =Ey, ‘ o
~b, if Eyp_y <E, <0 | | (4.3¢)
\
Companion to 2§ is another meromorphic differential, 2, also uniquely specified by 3,
‘ m+1 2N
1 (=D""YILE;\ 4k
O = -5 EN*' = BOEN — ... — BYE — i ER(E)" (4.42)
¢ =0, k=1,...,N, p,cyclesasin(43c). (4.4b)
B ‘ ‘

Whereas 2§ will be used to identify nonreal pairs of double points ES,_, ES, and thus all potential
linearly unstable modes of wavenumber «, in ' associated to qy(x,t), the differential Q) will then be
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used to compute the linearized growth rate o(x ) in the unstable direction(s) [17]:

ao%)=nnﬁfpngx (4.5)

p—1

Remarks

The differentials 2§, QF) reflect fundamental properties of solutions g,(x, t) generated by IST from
this prescribed simple periodic spectrum 3% = {E,}?",. These differentials will be computed in order to
determine:

(a) the curves of continuous spectrum of .Z* for given 3§ (recall facts 2, 7);

(b) the number of unstable modes associated to g,(x,?) and their linear growth rates.

0 and ) also provide independent numerical checks on the computation of the wavenumbers k; and
frequencies ;. Riemann bilinear identities yield alternative formulas to (3.21e), (3.219) [19]:

K= 959(;), | ' (4.6a)

v, =0, | - (4.6b)
where

vi~a; ifE, <E,; <0, vi~b ifEX =E,. ' (4.6c)

The differentials 02, 12§ are the fundamental objects in the modulation equations of an N-phase
wavetrain g, (x,t) [19, 20]. Thus, these calculations will be necessary in any numerical simulation of
N-phase modulation theory.

5. Numerical inverse spectral solutions: N =1

We now implement steps 1 through 4 of section 3 and display several one-phase sine-Gordon
wavetrains by the inverse spectral algorithm (in contrast to the classical construction of section 2). We
also compute, following section 4, (a) the entire continuous spectrum (3.1) of linear system (1.3) with
potentials (g, g,) given by these single-phase solutions, (b) all potential linearly unstable modes of these
solutions, and (c) the linearized growth rate in each unstable mode.

Step 1. Choose

38 ={E,E)E,<E,<Qor E¥=E,, E, #E,}. , (5.1)
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b
a p b
E 2 S
a 1 b

Fig. 2. Canonical a and b cycles, N=1: (a) for E; <E, <0, and (b) for E, = E}.

Since there is only one 2m-periodic phase, thus one wavenumber k, and one frequency w,, any choice
of 3, vields an x-periodic and ¢-periodic solution. Later we will generate one-dimensional curves in
3_, corresponding to fixed x-period, x(E|, E,) = constant, and fixed ¢-period, w(E,, E,) = constant. If
k =0 or w =0, the x- or t-periods are arbitrary.

Step 2. Compute all period information on the elliptic Riemann surface, %,
%= ((E,R(E))| R E) = E(E~ E\)(E - E,)}. (52)

From the branch cut convention in fig. 1, the two classes of 3§_; are depicted in fig. 2, along with the
canonical a, b cycles.

By virtue of the symmetries in 3(_, (invariance under complex conjugation) and the inherited
symmetry in the a,b cycles in fig. 2, the path integrals of basic differentials on “# of the form
E/dE/R(E) may be tremendously simplified for numerical computations. With curves a, 8,7, B;,v; as
depicted in fig. 3, with x,, y,, x{ arbitrary, the numerical computations of a, b cycles for all differentials

|
y | o
1 | .
I s\f
Y o FARY? B\
7% 7 tx ff
Ei1 B X x| T X1
.@% e,
| 1,9(
|
a | b
|

Fig. 3. Parametrized paths for numerical computation of @ and b cycles, N= 1.
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E’dE /R(E) simplify to

Case 1. E,<E,<0. For j=—-1,0,1,

ij(g =2Re(j;§z(iE§), - (5.3a)

§ sy ~2m( [, 75 | (530)
Case 2. Ef =E,. For j= —1,0,1,

aizg =4Re(/ﬁ§zg), | | (5.42)

éizg=21{e(fhzg +2ilm(/[31§z%§). (5.4b)

Remark. These closed path integfals are independent of the choice of x>0, y;,>0, x; <0, which we

exploit to check the numerical computations by picking at least two choices of these parameters for each
calculation.

The holomorphic period data only involves j=0 in (5.3), (5.4), which provides the normalization
constant C,;, (3.13), and period “matrix” B,;, (3.14). We compute the meromorphic period data,
j= —1,1in(5.3), (5.4), in order to construct the meromorphic differentials 2, 2®, egs. (4.3), (4.4).

Step 3. Construct the Riemann theta function of N = 1 variable.

The Riemann theta function, @(z, B), for elliptic curves (5.2) is (with B =B,,)

O(z;B) = Y exp|im(Bk?+2zk)]. (5.5)
kezZ :

For the two classes of genus one curves of interest here, the period “matrix” B takes the explicit form
(recall (3.20))

B=ilm(B) E,<E,<0, B=1+iIm(B) E¥=E,, | (5.6)

with Im(B) > 0 in both cases.

Step 4. The real sine-Gordon theta function solutions (3.19), with N =1, are evaluated along z =1 and
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z=1+ 3, with [(x,) given explicitly by (3.19), (3.21), (3.23), which yield

l(x,t)=-2iC 1+L£ x+ 1+—(_—1)m——t+l (5.7)
’ ! 16//E,E, 16/E,E, o '
=(6,+6")B/2w+3 E,<E,<0,
=(6,+6%9)(1-2B) Ef=E,. | (5.8a)
Cu=(9§—di)_l’ R*(E) =E(E-E)(E-E,), | (5.8b)
aR(E)
0, =k, x+oit, 6)<[0,27), (5.8¢)
K[) 41 (—1)m+]
=5 Cyll+ —+—— E, <E, <0,
(“’1 B """ 16\/EE, e
_ 4mi (-1)"*!
=1=35%u 1im Ef =E,. (5.8d)

Remark. (On the numerical computations.) The theta functions, (I + 1; B) and O(I; B), with the
symmetries described above for B, [ and [ + %, have the property [6]

[6(1+ 4 B)]" = 6(1; B).
'Thus,

6(!/+ 3; B)

q=i1ﬂ(W (5.9)

)2=4arctan(‘—mM)i).

Re[O(/; B)]

The real and imaginary parts of @(/; B) are separated a priori, again using the structure of ! and B. We
now proceed to explicit computations. |
|
Example 1. x-independent, pendulum solutions.

Spatially constant solutions of sine-Gordon are strictly periodic, with the discrete parameter m = 0 in

(5.7), (5.8). From (5.8d), the x-independent condition «, =0 corresponds to the explicit constraint on
&

k, =0 iff E,E,=1/162. - (5.10)

For the two cases (5.3), (5.4) of 2)_,, this condition (5.10) yields an explicit parametrization of the real
one-dimensional space of 2§, with x =0. To make contact with the parametrization of the classical

pendulum representation of section 2, we also include the sine-Gordon energy H as a function of
E, E, [5].
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7.0

7 , a

q,xt)

e
: 1
timg 7222 ~ e 8626

Fig. 4. The one-phase solutions g(x,t) computed from (5.7), (5.8), (5.9) are shown for two t-periods and for_ -6 <x < 6. Since
k1 =0 for these solutions, they are x-independent; the x-period is chosen arbitrarily. In (2) E; = Ef = L ei™/® o, = 0.98289,

Im(B) = 0.28867, in (b) E; = Ef* = 35 ¢™%%D | = 0.87, Im(B) = 0.47274 and in (c) E; =E{ = % €'?™/3, w, =0.7284, Im(B) =
0.63931.

Case 1. E¥=E,, k, =0« E,E,=1/162

E,=+¢e?, ¢e<(0,m), H(E,,E,)=1—-8(E,+E,)=1—cos¢ €(0,2). (5.11)

Case 2. E,<E,<0, x,=0=E,E,=1/16%
E,=—+%e", n>0, H(E,, E,)=1+coshn>2. (5.12)

Figs. 4a—4c display g,(x,t) computed from (5.7), (5.8), (5.9) in case 1, (5.11), where ¢ = phase(E,) =
amplitude of g, = w/6,0.461w,2w/3, respectively. Figs. 5a-5¢ show the corresponding Floquet spec-
trum of (1.3) for the solutions in figs. 4a—4c. Figs. 6a—6c¢ depict Re( /022 ) and Im( £ Q4. ,) along the
nonreal band of spectrum in the upper half plane, from which A(E) is computed, complex double points
are identified, and the corresponding linearized growth rates are determined.
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eigenvalues, (3.6), that arise for the indicated x-periods, taken as integer multiples of 6 (see fig. 6 on next page).

In the general N =1 case, the differentials 2, 2™ are

1
0 (£) =~ £2- g0 -

1
a9 (£) = - 3 £°

16

(—1)m¢3752) dE

- BYE +

16

(—l)mVEfEZ) dE

where B{*), B{"’ are uniquely specified by

$

wcycle

O = ¢

wy cycle

uocycle ~a, — 2b,

~b1

so that

3()_96

EdE

Q(t)=0, ‘
El* =E2, |
E,<E,<0,

R(E) *

ER(E)’

ER(E)’

( 1) \/E—Ez
$ ey || 6 meE

(5.13)

(5.14)

(5.15a)

(5.15b)

(5.15¢)
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Fig. 6. We plot jEEl.Q(") in (al), (b1), (c1) and jlfl()(’) in (a2), (b2), (c2) where E is along the nonreal band of the spectrum; the
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respectively. (al), (b1), (c1) allow the construction of A(E) along the complex spectrum, whereas (a2), (b2), (c2) constitute growth
rates. In (al), (bl), (c1), the solid curve represents the exact result from eq. (5.18a) and the hatched curve is from the computed

values. These figures allow one to obtain complex double points, (3.6), and their growth rates for any choice of x-period. For

example, for the complex double points, Egpﬁl = (Egp)* = leeidz;?’ in figs. 5b, Sc, we find: in (b) ¢¢ =0.2667, o, = 0.238 for

L =12,24; ¢§ =0.3807, 0, =0.233 for L = 18; dag = 0.418,05 = 0.190 for L = 24; and in (c) d>‘f =0.237w, o, = 0348 for L = 24;
¢$=0342m, o, =0.456 for L =18; ¢$=0485w, o3 =0.505 for L =12,24; ¢<=0.583mw, o, =0.420 for L = 18; ¢3 = 0.618,
o5=0342for L=24. al a2 bl b2 ¢l 2

The graphs 6a—6c¢ give complete linearized stability information as follows. Hochstadt’s formula, (4.2),
becomes

A(E;q(1)) =2cos(L E.Q&’,‘L ), (5.16)

E,

where L is the x-period which is arbitrary for these x-independent solutions. For given L, one first finds
if there exist any complex double periodic spectra Eg along non-real curves of spectrum by solving for E ;’ &R
which satisfy

d
Lvangvx;1=pw, p+0.
El

In each case, for L small enough there are no complex double points, and likewise no linear
instabilities of g,(¢) for those lengths L. As L increases beyond m/max ( f,fl.(l(’") in fig. 6, nonreal
double periodic spectra appear on the corresponding complex band of spectrum in fig. 5. These complex
double points El‘,j label linearly unstable modes of g(¢), from fig. 4, whose growth rates o, are read off
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directly from fig. 6 by the formula

7, = 2Im([539<'>). T | \ (5.17)
E, Wil }

As an illustration, we consider the pendulum solution ql(t) with E, = 3= /™04 energy H = 0.8778,
and frequency w = 0.87, considered on an x-interval of length L =6, 12 24. Note from fig. 6b that
max( /£ 2™) = 0.3313. For L =6, fig. 5b shows, since 6 max(/;2*’) <, there are no complex double
spectra. For L = 12, there is one pair of complex double periodic points, since 7 < 12 max( { If 0™ <27,
For L =24, 2w < 24 max( EE.Q(X)) < 31, there are two pairs of complex double points. In each case, we
find E‘J| such that along complex spectrum | E. E,0Q0) = =pw/L, and then compute the corresponding growth
rate g, by (5.17). The results are

L=12, E%=(0.0421,0.0464), o, =0.1193,

L =24, E¢=(0.0421,0.0464), o, =0.1193, ES=(0.016,0.0606), o,=0.0949.

Remark. The x-periods L = 6,12,24 are chosen to make contact with our extensive numerical investiga-
tions of the weakly perturbed sine-Gordon PDE [10, 11, 15, 16]. Also, refer ahead to case 3, section 7.1.

Remark. Analytic checks on the numerical discriminant code via exact formulas are provided by the
following special examples.

In this special case of pendulum solutions [17], the form of 2§, (5.13), simplifies dramatically, with
‘m=0, BP=0, EE,=1/16>, "

and 0§, becomes an exact differential,

Q%LI(E) = _dW(E)’

W(E)=VE+1/16E—Lcos¢ if E; =€, |. . AT

=VE+1/16%E + Lcoshn if E;= — Le". (5.18a)

Thus, the Floquet discriminant becomes
A(E;q(t)) =2cos[ LW(E)], (5.18b)

which yields an analytic representation of the entire Floquet spectrum, including a precise labelling of all
double periodic spectra. The spectral codes based on (5.13), (5.15) are checked, in these special cases,
against the exact analytic formula.
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In the two cases (5.11), (5.12), the Hochstadt formula (5.18) yields:

Case 1. E,=«e" E,=Le ™ ¢e(0,7),0<H<2.
3={E|-2<A4<2}={E|W(E) isreal}
={Ex0)U{E=%¢e" —¢<0<d).
3P = periodic spectrum = 3® U 3@
30 ={E|A=+2, A(E,) #0} =(E,, E,},
3O=(E!| A= 12, A(E}) =0} = {E}IW(E}) = jm/L}.
The nonreal double periodic spectra are precisely given by

d_ 1 ,tia;
Ej =1w%¢

cos a; = cos ¢ + 8j>w?/L?, j=1,..., M,
where M is the largest positive integer such that

cos ¢ +8(Mm/L) < 1.
(Note: These double point formulas coincide with results from our general codes.)
Case 2. E,= — %e", E,= — e ", n>0, H>2.

S={E>0U{|E| =%} U{EIE,<E<E,}.
The nonreal double periodic spectra are

Ef = getly,

cosa;= —(coshn ~8jm/L), j=1,....M,
where j=1,..., M satisfy

|coshn — 8jm/L| < 1.

These formulas are relevant for the next examples.

Proceeding now to some more examples, figs. 7a—7c display g,(x,t) in case 2, (5.12), corresponding to
kink or antikink pendulum solutions, where E, = — sz e", m =0.001,0.1,1.0, respectively. Figs. 8a—8¢c
display the corresponding Floquet spectrum of (1.3) for these “helical” pendulum modes. Figs. 9a-9c
depict Re( /£ ) and Im(/£€2{’.,) along the nonreal band of spectrum, |E| = 1, in the upper half
plane.

Once again we deduce all linearized stability information from these graphs. We first fix a length L,
then determine if there are any nonreal double periodic eigenvalues, Eg, by solving for Eg & R such that
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q,(x.t)
q,(x,0)

q,(x.t)

,3 “000g
Ime 3950y

Fig. 7. Spatially uniform, running pendulum solutions are depicted. (a1), (a2) both correspond to negative real periodic spectra of
case 2, (5.12), 7 = 0.001, energy H = 1 + cosh = 2.0000005, where (al) is the kink mode of this energy specified by Re(/;) = 1,
(5.8a), and (a2) is the anti-kink mode with Re(/;)= — %, (5.8a). (b), {(c) are higher energy running pendulum modes, with

H=1+coshn, n=0.1in(b) and n = 1.0 in (c), and we have selected to display the kink mode in (b) and the antikink mode in (c)
by the choices of Re(/)) = §, — §, respectively.

jEEF.Q(’" = pw/L. For each such pair, (EZ,(E$)*), we then compute the linearized growth rate o, in that

mode by formula (5.17). Explicit examples may be created by the reader with the information provided
here.

Example 2. t-independent solutions w, =0, x; # 0.

Each of the above x-independent solutions yields a corresponding ¢-independent (inverted pendulum)
solution by the Backlund transformation (g, x,t) — (g + w, ¢, x). These examples are instructive from the
point of view of curves of spectrum and their connection to linearized instabilities. The above formulas for

02 and 02 are interchanged, so that now Q¢ is exact, not 2, and the Floquet discriminant must be
computed numerically.
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Fig. 8. The Floquet spectrum for the modes 7a, 7b, 7c is displayed in (a), (b), (c) respectively. The negative real band of spectrum
is the interval from E, to E,. For charge m = 0 (x-independent solutions), the entire circle |E| = & is continuous spectrum. From
fig. 9, with chosen spatial length L, pairs of complex double points, (3.6), for selected lengths L = 6,12, 18,24 are labelled on the
spectral bands.

For the same choices of 2§_, as in example 1, but with m =1 now so that w =0, « # 0, (5.8d), the
spectrum is easily described relative to the m = 0 case of figs. 5a-5c, 8a—8c. For spatial oscillatory
solutions (Ej = E,) at rest, the real spectrum is the same, whereas the complement of the m =0
spectrum on the circle of radius ;5 now becomes the spectrum with m = 1. For spatial kinks (E, < E, < 0)
at rest (s-independent), the real spectrum is the same as in figs. 8a—8c, whereas the “ring” |E| = & is
absent. This implies that there is no complex spectrum, and therefore no possibility of linearized instability

for spatial kink trains at rest.
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Fig. 9. The plots | EEI 0w [EEl N for solutions 7a, 7b, 7c are shown in (al), (a2), (b1), (b2), (c1), (c2) respectively. The same remarks

as in the fig. 6 caption apply here.
|

Example 3. Single-phase oscillatory traveling waves.
We now relax the constraint E,E, =1/ 162, which yields x and ¢ dependent traveling waves (k # 0
and o # 0). Of interest now is the set of all 3§_, with a fixed spatial period, or likewise, with a fixed

temporal period, computed now from formulas (5.8d).
Fig. 10 provides several loci of E; in the upper half-plane (UHP) (E, = E*) corresponding to (m = 0)

{E, € UHP| k, = [4wi/(1 - 2B)]C,,(1 — 1/16|E,|) = constant}, ~ (5.19)
{E, € UHP|w, = [47i/(1 - 2B)]C,,(1 + 1/16]E,|) = constant}. 5 (5.19p)

Fig. 10. Loci of E; (=E}) in the upper half-plane corre-
sponding to fixed x-period, L = 6,12,..., 48 (solid curves) and
fixed t-period, w; = 0.4,0.65,0.87,1.0, 1.2 (dash-dotted curves)
are shown. Note that these curves are symmetric under inver-
sion through the circle of radius 7+ (the dotted curve). At the
intersection point of the solid /dashed curves, inside |E| = %6,
the corresponding solution g(x, ) is a right-running single-
phase wave with indicated wavenumber «; = 2w /L and fre-
quency w;. At the inverted point about |E| = ﬁ, 1/16%E,,
one finds the same wavenumber and frequency, but a left-run-
ning wave. On the circle one finds «; = 0. Note the roles of «

: and @ can be reversed by the choice of the charge m=1
-0.10 -0.05 0.00 0.05 0.10 instead of m =0.

0.10

0.05

0.00
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q,xt)

Fig. 11. The two single-phase wavetrains with L =12, @; = 0.87 are shown. In (a) E, = 0.0155362 ei™0.708D Im(B) = 0.681427,
which gives a right-running wave. In (b) E, = 0.251439 ei™076D  Tm(B) = 0.681439, which gives a left-running wave. The two
simple spectra are related by inversion through |E| = %

0.503

Fig. 12. The Floquet spectrum in the upper-half plane corre-
sponding to the solution in fig. 11b is shown. The spectrum is
symmetric about the real axis. The spectrum includes the
positive real axis, which is not shown here. There are two
] pairs of complex double points, (3.6), for L =12 given by
\ E1d=(0.1242, 0.0391), with linearized growth rate o; com-

0.251
i

puted from (5.17), o; = 0.0373 and E¢ = (—0.0643,0.18), with
> . . growth rate o, = 0.1102. The spectrum corresponding to fig.
. 0.503 ~0.251 0.000 0.251 0.503 11a is obtained by an inversion through |E| = &.

0.000

(Again, these formulae for k, and w, may be reversed by taking m = 1, corresponding to the discrete
transformation (g, x,t) = (g + m, ¢, x).)

The intersection of these k; = constant, w, = constant curves yields the unique 3§_, ={E,, E, = E¥}
corresponding to the unique single-phase sine-Gordon solution (5.8), (5.9) with the prescribed wavenum-
ber and frequency. There is another solution with the same value of ||, |w,| but opposite phase velocity
obtained by inversion of 3{° through |E| = %, i.e., 3¢ =(1/16%E,,1/16?E¥}. '

For example*!, prescribed x-period L = 12 and frequency « = 0.87 yields precisely two distinct sets
3®_|, one with E, =0.251439¢!"07%D E = E* and the other simple periodic spectrum is obtained by
inversion of this set through the circle of radius 5. One simple spectrum (outside of the circle of radius )
yields a right-running (fig. 11a), the other a left-running (fig. 11b), single-phase wavetrain.

The Floquet spectrum for these solutions no longer resides on the circle of radius 1—16; in fact, one
continuous spectrum is the inversion of the other through this circle. We compute these spectral curves
numerically using Hochstadt’s formula, (5.16), with 0§, given by (5.13), m =0. Fig. 12 shows the
spectrum corresponding to fig. 11a. For period L = 12, we find there are two pairs of nonreal double
periodic eigenvalues, each of which yields a positive growth rate, so that the solution is two-dimensionally
unstable. The same solution also is periodic on an interval of length L =24,36,..., etc. For L =24, we
find four pairs of nonreal double points.

#*!This example is relevant for the studies of the damped, driven sine-Gordon system with x-periodic boundary conditions [10,
11].
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12.568

q,(xt)

0.0()0 N

Fig. 13. Three traveling wave kink solutions for two x-periods and two ¢-periods are shown. In all three cases E; = —0.2, while we
vary E, with E, = —0.1, — 0.120642, — 0.15 in (a), (b) and (c) respectively.

Example 4. Single-phase kink trains.
We now display some running wavetrains where E, <E, <0 are not symmetric about |E| = 11—6 In
addition to displaying these traveling wave kink solutions, figs. 13a-13c, we have chosen these examples

also to illustrate the “ring” of spectrum may deform and detach from the negative real band of spectrum
between E, and E, (figs. 14a—14c).

6. Numerical two-phase inverse spectral solutions

Next we implement the IST algorithm of sections 3, 4 for two-phase sine-Gordon wavetrains. This class
of solutions requires more sophisticated mathematical analysis than the classical traveling wave solutions,
and thus represents the first significant payoff from the general IST construction of solutions. We
emphasize, however, that even in the single-phase computations above, nontrivial results have been

deduced from IST: the spectral theoretic results, labelling of unstable modes, and computation of
linearized growth rates.
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Fig. 14. The Floquet spectrum corresponding to the solutions in figs. 13a—13c are shown. The crosses denote the simple spectra
and the circles denote the complex double points, (3.6).

The two-phase sine-Gordon solutions may consist of the nonlinear superposition of two purely
oscillatory phases, two kink phases (periodic mbd 2) or two antikink phases, a kink—antikink pair, or an
oscillatory-running mode superposition. At the level of solutions, these are rather easily categorized.
However, there is a variety of spectral configurations, which translate into physical aspects of the waves
such as stability properties, which have not yet been analytically charted. We will display some of this
variety and corresponding physical implications as we implement the two-phase IST algorithm.

Step 1. Choose a two-phase simple-periodic spectrum of (1.3),

3¢ ,={E;,j=1,....,4| E;;_; <E,;<0or Ef;=E,;_,, all distinct}. (6.1)

J
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Fig. 15. (a) Parametrized paths for numerical computation of a, b cycles. (b) Computationally efficient parametrization of a, b

cycles when there are at least two pairs of conjugate branch points.

(We assume for now that (6.1) is a bona fide simple periodic spectrum of (1.3), i.e., the fixed period
constraints (3.9d) are satisfied. These constraints will be verified in step 3. Nonetheless, if one relaxes the
constraints (3.9d), this algorithm yields sine-Gordon solutions which are quasiperiodic in x and t. The
spectral theoretic and stability considerations, however, must be completely revamped.)

Step 2. Compute all period information on the genus 2 Riemann surface %, determined from 3§, by

R= (E,R(E))|R2(E)=E1:[1(E—Ej) . (6.2)

The branch cuts and choice of a, b cycles on % are chosen as in fig. 1, and we recall the holomorphic

period information as described in step 2, section 3. For computational purposes, we first depict the
parametrization of each closed curve a;,b;, j=1,2, on #, specific to whether the pair (E, j-1E5;) is
negative real or complex conjugates. (Recall fig. 1 of section 3 and fig. 3 of section 5.) With the

parametrizations of fig. 15, the single-phase formulae, (5.3), (5.4), apply to each individual pair of simple
spectra, (5.3) for negative pairs, (5.4) for conjugate pairs. (These results are, in fact, independent of N

and apply to general 3.

Parametrized a, b periods of basic differentials
Let ¢,=E?dE/R(E), p=0, +1,2. Then, in the notation and convention of figs. 1, 15,

Case 1. E,, | <E,; <0

95¢,,=2Re(fr¢,,). (6.3a)

ay

§§a¢,,=2ilm(fa y <b,,)- (6.3b)
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Case 2. Ef;=E,;_,
or-ene{ o) « e

5(}3)j¢p=2Re(frj¢p) +211m(f3j¢p). (6.4b)

Remark. As noted in section 5, these path integrals are independent of the choices of x;>0, x, >0,
xj< 0, which we exploit to check the numerical computations.

Remark. For computational efficiency and economy, specific choices of the paths a,, 8, B;, I; of fig. 15a
may be chosen. For the N =2 example of fig. 15a, one may take y, = E,;, x; =Xx,, so that two of the five
paths are the same, a, = ;. In the N =2 example of two conjugate pairs for 3¢_,, the economical
choice is indicated in fig. 15b. In general, 2N linear segments suffice to compute the 2N cycles a, b.

The holomorphic period data, normalization constants C;; and 2X2 period matrix B, are then

constructed from the periods (6.3), (6.4), p=0,1, by purely algebraic operations via formulas (3.13),
(3.14). ‘

Step 3. Construct the Riemann theta function of two variables, @(z; B), with period matrix B computed
above. Given B, we can compute 6(z, B) for any z:

O(z;B) = ), exp[in(Bk,k) +2im(z,k)]. . (6.5a)
kez? ‘

In particular, we shall compute @(z, B) along the real sine-Gordon flows, z=1I(x,t)+ % and z=1,
(3.19), (3.21).

The period matrix B and the 2-phase vector I(x, t) have the special symmetries indicated in equations
(3.19), (3.20), which we first numerically verify and then explicitly use in the numerical computations.

Step 4. Compute the 2-phase sine-Gordon solution, (3.19), with the prescribed simple spectrum =%_,,
(6.1),

2 1. . ‘ ’
%(Lt)=iln(%) =4arctan(%%g%%—). ‘ (6.5b)

|
Remark. (On the numerical computation of multiple theta series) }

We now describe the procedure used for numerical evaluation of the theta function for breather trains
(similar considerations apply in the other cases as well). In this case Re(B)= 1l and [ is purely
imaginary. Using this, we split the series (6.5a) into three pieces, corresponding to (k = (k,, k,)") k, and
k, both even, both odd, and one even, one odd. The terms in these subseries are all positive and real

(exponential of a real quantity), where the first two contribute to the real part and the third one gives the
imaginary part of @(l; B).
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Next, observe that each term in the series is of the form exp{—=[(bk, k) + 2(v, k)]}, where b = Im(B)
and ! =iv. We estimate the k, which gives the largest contribution to the series from the maximum
absolute value of the quadratic form which multiplies . The estimate of the number of terms that must
be included for a given relative accuracy is easily obtained in terms of [|b]. In single precision machine
arithmetic this often leads to overflow. To avoid this, we subtract from the argument of the exponential
an estimate of the maximum of the quadratic form. The effect of this is an overall factor which cancels in
the ratio in (6.5b). In practice, it is sufficient to include = 10 terms in each component k; to obtain
approximately 6-digit accuracy for moderate values of x and ¢. Recall that the values of the theta
function in one fundamental period suffice to give its values for all arguments. These periodicity
properties are not implemented in the numerical computations, but rather checked numerically,
primarily to test how well the numerical algorithm works.

Before proceeding to explicit examples, we recall the spectral theoretic discussions of section 4. To
apply spectral theory, we must choose 2§)_,, (6.1), so that the fixed x-period constraints are satisfied.
With «;, x, as computed from (3.21e), we must have (from (3.9d))

ky=n2w/L, «k,=n,2w/L, n;,n,€Z, _ (6.6)

for some fundamental x-period L. ‘

Numerically, of course, all machine computations yicld commensurate «,, «,, but the period L may be
quite large. Following most conceivable applications, we opt to prescribe L = £(1) and search for those
3¢, that satisfy (6.6) for small n,, n,. We shall begin with a special subclass of 3$_, for which (6.6) is
automatically satisfied. Namely, we impose the symmetry

E, €3\, iff 1/16°E;€3%.,, (6.72)
which can be shown [21] to impose the following constraints on «, w:
{k,= tKky0rk,=0,k,#0} and {w;=tw,orw,=0,w,#0}. - C (6.7b)

For example, we find 8, = k,x — w¢, 8, = k, X + w,¢, and in general the two-phase solutions (6.5) where
3, satisfies the symmetry (6.7a) are standing waves if the phase shifts satisfy 67 = —63, (3.23b).
(Recall from section 5 that the symmetry (6.7a) for N = 1 implies either x;, =0 or w, =0.)

We also remark that the symmetry (6.7a) of the simple periodic spectrum implies a corresponding
symmetry on the entire continuous spectrum of (1.3): E € continuous spectrum = 1/162E € continuous
spectrum. This result follows from period symmetries which ultimately imply [5, 21]

A(E) = (-1)"A(1/16°E). ,‘ (6T

6.1. Two-phase periodic standing waves. E; € 3§)_, < 1/16°E, € 3§)_,

This subsection is devoted to two-phase standing waves, characterized spectrally by the symmetry
(6.7a). This subclass of X{_, is real, two-dimensional, and is explicitly parametrized below. The
symmetry (6.7a) of the branch points of %, (6.2), induces symmetries on periods of differentials on %,
which imply the wavenumber and frequency conditions (6.7b). The relations (6.7b) define fundamental x
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0.0625

Fig. 16. Consider 3O, ={E|, Ey, E5, E,|E,=E} =p, &'?,
E;=Ef=p,e", pip,=1/16% p; < %}. Loci of E; in the
upper half plane corresponding to fixed x-period, L =
6,12,18,24 (solid curves) and fixed ¢-period, w,= —w, =
0.2,0.4,0.6,0.8,0.87,1.0,1.2 (dash-dotted curves) are shown.
The semi-circle of radius 5 is included. The two dashed
semi-circles represent the boundary of the region for which
0.0625 -0.0312 0.0000 0.0312 0.0825 data were obtained.

0.0312

1 0.0000

and ¢ periods for two-phase standing waves:
L=L®=2x%/|kl, T=L"=2m/|w,l. o (6.7d)

6.1.1. Standing breather trains .
Here all E;,€3§)_,, (6.1), are nonreal. If we introduce polar coordinates, then this two-dimensional
family of standing 2-phase breather trains is explicitly parametrized by

{Eg\lez‘ K= KZ} = {r el rei¢ (r/162)ei4’, (r/162)e_id’; O<r< 11—6, R = (0,11')}, (6.8a)
or
(501110, ky = 0] = (€1, e, e e 9250 <.y < by <. (6.80)

The fixed period subspaces L = L) = constant or L = constant, of these families are then real,
one-dimensional subsets of (6.8a), (6.8b). The curves of x, = constant and w, = constant are numerically
computed (fig. 16) for the subfamily (6.8a). In applications to weakly damped and driven sine-Gordon
systems, for example, the x length L fixes «, the driving frequency determines w,, and the intersection
of x;, w, level curves provides a candidate for two-phase, frequency- and phase-locked breather trains of
the perturbed system.

We now exhibit theta function solutions and corresponding spectral data for elements of these two
families.

Example A.1. Standing breather trains with |E;| = %, j=1,...,4

We shall display two clements of this family (6.8b), along with their spectral and stability properties.
First we note some features common to all solutions in the family (6.8b) with m = 0:

D, #0,k,=0, 0, = —w, # 0.
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The zero wavenumber, «, =0, indicates a nonzero spatial mean of these solutions, as the graphics
below confirm. :

(ii)
m(B) - (o )

(iii) maximum amplitude of g,(x,t) = ¢; + ¢,.

This is a remarkable nonlinear superposition of the single-phase result, max(q;) = ¢, = phase of E,.

(iv) With charge variable m = 0 in (3.19¢) and (4.3), the continuous spectrum of (1.3) for g,(x, ¢) in this
family is always E > 0 together with the two arcs of the circle E = 5 €'%, ¢ € (¢, ¢,) and ¢ €(—,, —
¢,). Clearly, this entire continuous spectrum is invariant with respect to reflection through the circle
|E| = %, E > 1/16°E.

(v) For each of these solutions, L fEEIZ.Q(") =1, so that A(E) has no double points on these two arcs of
spectrum, and therefore all of these standing breather trains are neutrally stable on their fundamental
x-period.

(vi) E = 5 is a double periodic eigenvalue.

We numerically compute that A(%) = +2, and that the polynomial part of 2} has a simple zero at
E = £, which implies A'(5z) = 0 by Hochstadt’s formula.

The first example is given in fig. 17 where we have selected the two free parameters, ¢, ¢,, so that
L™ =12 and w, = 0.87. The graphics include: (a) the spatial structure of g,(x,¢,) at selected times ¢,
(b) contour levels of the surface g,(x, ), (c) the surface g,(x,¢) over one x-period and two temporal
periods, (d) the spectrum of (1.3) in the upper half plane for this potential g,(x,t) with L = the
fundamental length, (e) A(E) along the nonreal band of spectrum, (f) (L /) j,fl.(l(’" along the band of
spectrum, (g) Im(/£102®) along the spectrum.

Remarks. Note from fig. 17b that the maximum and minimum values of g,(x,t) are ¢,+ ¢, and
— (¢, + ¢,) respectively.

From the values of L[£0, one deduces that A(E) = 2cos(L [£2) is monotone on the two spectral
bands, so that there are no complex double periodic eigenvalues when the system has the fundamental
length L™,

For lengths L™ =nL™, n>1, n — 1 double points are created on these complex spectral bands. For
example, with L =24 = 2L®, the location EJ where (L /w)/,flﬂnm =1 in fig. 17f becomes a double
point. Then, the growth rate associated to this potentially unstable mode is read off from fig. 15f and
formula (6.5). For this example with L = 24, a double point occurs approximately at Ef = L i35 with
growth rate o, = 0.058.

As another example of this family, we choose ¢,, ¢, so that ¢, + ¢, =, a much larger amplitude
wave than the previous one. Here we display the surface (fig. 18a), the spectrum (fig. 18b), A(E) along
the spectrum (fig. 18c).

Example A.2. Standing breather trains, family (6.8a)

The following features are common to all members of this family, again with m = 0. We also have chosen
length L = 12 for most of the examples below.

(i) Kk, =k, #0, w; = —w,# 0. (Recall the «, = constant, w, = constant level curves for this family,
fig. 16.)

In contrast to family (6.8b), now there is no zero wavenumber, so the spatial mean of this family is zero,
as confirmed in the graphics below (figs. 19-25).
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Fig. 17. For the two-phase solution with E; = EF = 0231 E, = Fx = LI035 | — 0 /|i)] =12, k,=0, 0, = ~wy
= (.87 we show (a) the spatial structure of g(x,¢,) at selected times ¢, =n(T/8), n= —4, - 3,...,4, T is the temporal period, (b)
contour levels of the surface g(x, ), (¢c) the surface g(x, ¢) over one x-period and two temporal periods, (d) the Floquet spectrum
in the upper half plane, (¢) A(E) along the complex band of spectrum, (f) (L/w)fg.(l“’ along the band of spectrum, (g)
Im(/£10") along the spectrum. In (d) the part of the spectrum along the positive real axis is not shown. In (), (f) and (g) the
horizontal axis represents the polar angle of the points of the band of spectrum. In the contour plot, (b), we show five uniformly
spaced contour levels, the dotted curves, the solid curves and the dashed curves correspond to g, <0, g, =0, g, > 0, respectively.
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Fig. 18. For the two-phase solution with E; =E¥ = %e™/3 E,=E¥=1£e2"/* L =2%/|x,| =8008, k;=0, w;=—w,=
0.6705 we show (a) the surface g,(x,¢) over one x-period and two temporal periods, (b) the Floquet spectrum in the upper half
plane, (c) A(E) along the complex band of spectrum.

(ii)
oy

(iii) Maximum amplitude of g,(x,) =2¢. If we fix ¢, then the amplitude is independent of r.

(iv) The spectrum of (1.3) is symmetric about the circle |E| = 1z, but since the simple periodic spectra
are off the circle, the spectral bands have more variety than in family (6.8b). The spectrum may all be
connected to the positive £ axis or may consist of two disjoint bands as in the previous family. We
provide examples of each type of wave. Generally, the spectrum is connected for sufficiently small
amplitude, and then detaches into two bands as ¢ is increased beyond a critical value that depends on
the value of r = |E,].

(v) E = 15 is a third-order periodic eigenvalue (A = +2, A'=A"=0, A” # 0) when the spectrum is all
connected, and splits into two double periodic eigenvalues on the circle |E| = & as the spectrum
detaches away from the positive real axis. This is numerically verified by computing the zgros of the
polynomial part of £2, which yield critical points of A. For example, when the spectrum is connected
we always find £ = & is a first order zero of the polynomial part of Q).

(vi) When the spectrum has two disjoint bands, there are rwo complex double points, E;,’ and (E,‘})*,
each of modulus -, which label potential instabilities. We show, howeuver, that the growth rates g, actually
vanish at these spectral points for every member of this family. (See the next remarks below.)

153
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Fig. 19. For the two-phase solution with E; = EF = 0.027239¢'™042%70 E, — £ = 0.143407e'™O4D [ =25/ |i,| =12, k=
Ky, w1 = —w, = 0.87 we show (a) the spatial structure of g,(x,¢,) at selected times ¢, =n(T/8), n= —4, —3,...,4, (b) contour
levels of the surface g,{x, t), (¢) the surface ¢,(x,t) over one x-period and two temporal periods, (d) the Floquet spectrum in the
upper half plane, (e) A(FE) along the complex bands of spectrum, (f) (L/-n)fflﬂ(” along the complex bands of spectrum, (g)
Im( [£102®) along the complex bands of spectrum. In the contour plot, {b), we show five uniformly spaced contour levels, the dotted
curves, the solid curves and the dashed curves correspond to g, <0, g, =0, g, > 0, respectively. In (d) the part of the spectrum
along the positive real axis is not shown. In (e)-(g) the horizontal axis represents the polar angle of the points on the band of
spectrum, the solid curves are for the left spine and the dashed curves are for the right spine of spectrum. The two spines are
related by inversion through the circle of radius 5. This symmetry is reflected in (). The two curves in (g) should be identical, the
difference reflects the numerical errors. The points of the spectrum were calculated to a relative accuracy of about 0.005.



210 R. Flesch et al. / Inverse spectral transform for the periodic sine-Gordon equation

[«

@ b

=

[=)

[on]

Q .

o

(=]

(=

2

o T T

-0.160 —0.080 0.000 0.080 0.160

(=]

e c

N

o

(o]

Q .

(=]

[=]

(=

S

@ T

T 0.000 - 0.654 1.307

Fig. 20. For the two-phase solution with E; = E¥ = 0.03¢/"C41609) E. = E¥ = 0.130208¢"™41609 [ =21/ |k, | = 10.994, k, = «,,
o, = —w, = 0.863, we show (a) the surface g,(x, ) over one x-period and two temporal periods, (b) the Floquet spectrum in the

upper half plane, (c) A(E) along the bands of spectrum. In (b) the part of the spectrum along the positive real axis is not shown. In
(c) the horizontal axis represents the polar angle of the points on the complex band of spectrum, the solid curves are for the left
spine and the dashed curves are for the right spine. Note that the two spines of spectrum touch at Tla.

(vii) The intermediate spectral configuration between (v) and (vi) has |E| = i as a third-order zero of
the polynomial part of 2, so that |A| —2=A4"=A"=A" =A% =0 at |E| = . Fig. 20 corresponds to
this special case. B,

Fig. 19 depicts a breather train with all connected spectrum, and where L = 12, w = 0.87. As in figs.
17, we provide: (a) g,(x,t,) at several times ¢,, which clearly exhibit zero x-mean as well as
the maximum amplitude =2¢,, (b) contour plots of g(x,t) which illustrate periodicity in x and ¢,
(c) the surface g,(x,t) over one x-period and two t-periods, (d) the spectrum of (1.3) with potential
q,(x,t) and the fundamental length L, which shows connected spectrum, (e) the graph of L&OfEQ®
along the complex “spines” of spectrum, which shows no complex double points exist with L = L&) = 12,
the fundamental length, (we emphasize this graph also determines the location of all double points for
longer periods commensurate with g,(x,¢), L =L =nL™®), (f) the growth rate o, associated to any
complex double point E;' is then gleaned from Im( ffl.()(')) where E is varied along spectrum. (Refer to
the remarks above in example A.1.)

As we increase ¢ the bands of spectrum touch at E = 5. We present the waveform (fig. 20a) and the
spectrum (fig. 20b) of this case (L = 14.562). In fig. 21, the degenerate eigenvalue at E = + has split into
two complex double points, EY, E{*, each with modulus & (labelled by a small circle on the spectral
band). Note, however, from fig. 21e that the growth rate o, vanishes at E?, so that even these higher
amplitude standing waves are neutrally stable on the fundamental period L™,
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Fig. 21. For the two-phase solution with E, = EF =0.027823¢/"/2, E; = E¥ =0.140397¢e'"/2, L =2w/ li;| =12, k, =k, 0 =
—w, =0.7928 (a) the surface g,(x,t) over one x-period and two temporal periods, (b) the spectrum in the upper half plane, (c)
A(E) along the complex band of spectrum (d) (L/7)/, 5 N> along the complex band spectrum, (¢) the absolute value of
Im( (£102") along the complex band spectrum. In (b) the part of the spectrum along the positive real axis is not shown. In (c)—(e)
the horizontal axis represents the arclength from E,. In (b) the circle represents a complex double point for L = 12. The double
point lies on the circle of radius <, and from (e) the linearized growth rate is zero. .

Remark. While the growth rate is zero in the mode labelled by E¢, E3*, nonetheless a small perturbation
of g,(x,t) will generically break Ej into a pair of simple spectra E*, and the perturbed wave will have
two additional phases 8, with amplitudes proportional to the phases of E*. The zero growth rate in
this mode labelled by E{ reflects that it will take #(1) time units for a small perturbation of g,(x,¢) to
evolve #/(1) distance away from ¢,(x,t) in the x-function space, rather than occur exponentially fast as
with nonzero growth rates.
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Fig. 22. For the two-phase solution with E; = E} = 0.022543e™0744) £, = F# = 0.173277ei™07) [ = 2q/ |k, = 12, K, =
Ky, @1 = —w, = 0.4807 (a) the surface g,(x,t) over one x-period and two temporal periods, (b) the spectrum in the upper half

plane, (c) 4(E) along the complex band of spectrum, the horizontal axis is the arc length from E, along the spectrum. The circle in
(b) is a complex double point of modulus Tlﬁ, with zero growth rate.

Remark. This family of 2-phase examples provides the first conclusive evidence that nonreal double
periodic eigenvalues are necessary for linearized instability but not sufficient. In ref, [17], we prove the
necessity of nonreal E f for instability, but could only conclude that one of the flows which commute with
sine-Gordon must be unstable. We have not confirmed this yet with the higher commuting flows for these
examples.

In fig. 22 we increase the amplitude (i.e., increase ¢, = ¢,) sufficiently so that the neutrally stable
complex double points almost merge at £ = — %, whereas ¢, = 1431 /180 is not yet near the singular
limit (soliton limit) corresponding to E, =E;, E,=E,€R".

For larger ¢,, fig. 23, the two complex double points have already collided at — % into a fourth-order
periodic eigenvalue, then split back into double points and traveled along the negative real E-axis in
order to preserve the symmetry E{ =1/162E$. This final spectral configuration with two vertical bands
of spectrum corresponds to a very large amplitude breather train as the fig. 23 indicates.

The two examples shown in figs. 24, 25 show the effect of changing |E,| for a fixed value of

¢, =¢,=7/3.

Example A.3. Standing kink-kink and kink-antikink trains
When each E; € 3)_, is negative real, corresponding to a nonlinear superposition of two kink modes,
or a kink and antikink, or two antikink modes, then the symmetry (6.7a) reduces %§_, to a two-dimen-
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Fig. 25. The spectrum in the upper half plane associated with the solutions in fig. 24 are shown.
sional family parametrized by n,, 1, € R*, with
1 _ 1, _ 1 1 .-
E1= _Eenl’ E2— _Ee 1“, E3— —ﬁenz, E4— 166 772. ) (6.9)

The fixed period constraint, L*) = constant or L) = constant, yields a one-dimensional subset of (6.9),
(0.

We will not present all the details as in the breather train examples, but rather choose one simple
spectrum 3§, of the family (6.9), and display all four possible wavetrains with this spectrum. These 27
possibilities arise, we recall from section 3 and equations (6.22), (6.23a), since each phase 6, may
correspond to a kink or an antikink mode depending on whether Re[(lo)j] =+ % or — %, respectively.

Fig. 26 consists of the four standing two-phase wavetrains with spectrum of class (6.9), (26a) with
I,=(+1,+1), (26b) with I,=(+ %, — 1), (26c) with I,=(— 1, + 1), then (26d) with I,=(— 1, — D).
Note that (26a), (26d) correspond to kink—kink, antikink—antikink standing waves, while (26b), (26¢) are

kink—antikink bound states.
£,

6.2. Two-phase periodic breathers with k, =2k,

Next we seek to generate periodic breather trains where 3_, satisfy the period constraints (6.6) for
small values of n,, n,. Section 6.1 exhausts n =0, + 1. We now illustrate cases where n; =1, n,=2.

We remark that these solutions break the symmetry E; — 1/ 162E]-, and likewise break the standing
wave constraint, inducing translational degrees of freedom.

We search for elements of

{(ZFL2l iy =nok} (6.10)

by deformation of elements of the family (6.8a), (6.8b). For example, we take E, =re'®, E,=re~ ¢,
E;=se'% and E, =se™ %, with s =7/16%r, where 7 =1 belongs in the family (6.8a). Fig. 27 shows the
behavior of k,/k, as a function of 7. Clearly, this family includes n,x, = n,k,, n,, n, € Z. However, L*)
changes as we vary . By varying both r and s, we can obtain specific values of L™, Fig. 28 depicts one
such periodic breather wave train with x, = 2«, and L = 12, along with spectral information. Note that
this example has one pair of complex double points (E{¥, E{®*), with E{® =(0.266,0.218) and growth
rate o = 0.035, so that this solution is unstable.
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Fig. 28. For the two-phase solution with E, = Ef=0.025214¢'"/3, E;=E}=0394631¢""/3, L=27/lx,| =12, k=2«
w; = 0.96, w, = —0.13206, we show (a) the spatial structure of g,(x, t,) at selected times ¢, =n(T/8), n= —4,-3,...,4, T=551,
(b) contour levels of the surface g,(x, t), (¢) the surface g,(x,¢), (d) the spectrum in the upper half plane, (¢) ACE) along the bands
of spectrum, (f) (L/'rr)/,flﬂ"‘) along the bands of spectrum, (g) Im(/£102(") along the spectrum. In (d) the part of the spectrum
along the positive real axis is not shown. In (e)-(g) the horizontal axis represents the polar angle of the points on the band of
spectrum, the solid curves are for the left spine and the dashed curves are for the right spine of the spectrum. Note that the

solution is quasiperiodic in time.
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Fig. 29. For the two-phase solution with E; = E¥ =0.03e!™/3 E; = E¥ =0.12¢!™/%, k; = —0.46506, «, = —0.42722, w, = 0.93627,
w, = —0.91806, we show (a) the surface g,(x,¢), (b} contour levels of the surface g,(x,?).
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Fig. 30. For the two-phase solution with E, = Ef = 0.03e!™/% E; = E¥ = 0.15e'™/3, ;= —0.45929, k, = —0.52639, w, = 0.93147,
w, = —0.96632 we show (a) the surface g,(x, 1), (b) contour levels of the surface g,(x, ). Observe that the solutions in fig. 29 and
this figure are quasiperiodic in x and ¢. E,=0.130208 ¢'™/3 belongs in class (4.8a). Note the deformation of the “fundamental
period parallelogram” in the contour plots.
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Fig. 31. For the two-phase solution with E; = E} =0.03e!"/3, E; =E¥ = 0.130208¢'™03611D . = - 048151, «, = —0.45260,
w; =0.92423, 0, = —0.92207, we show (a) the surface g,(x, t), (b) contour levels of the surface g,(x, t).

6.3. Two-phase, x and t quasiperiodic breather trains

If we choose arbitrary 3_,, the wavenumbers «,, x, and frequencies w,, w, are generically incom-

mensurate. Machine arithmetic yields all commensurate values, of course, but the periods are likely to be

quite large. For moderate space and time scales, the wavetrains are quasiperiodic in x and ¢. We depict
four such wavetrains in figs. 29-32.

time

Fig. 32. For the two-phase solution with E; = E¥ =0.01¢"/% E;=E}=0.03¢'"/?, «; = —1.2033, «, = 030046, w, = 1.4697,
w, = —0.95417, we show (a) the surface g,(x, 1), (b) contour levels of the surface g,(x, 1)
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The first three examples correspond to small perturbations of the simple spectrum with E, = 0.03¢'"/?
from the family (6.8a). Fig. 32 shows the solution for an arbitrarily chosen simple spectrum.

The spectral theoretic and stability calculations relevant for x-periodic solutions do not apply for these
solutions. However, the meromorphic differentials 2 and 2 are still defined, and play fundamental
roles in the modulation theory of these two-phase quasiperiodic wavetrains [19, 20), both for the
perturbed and unperturbed sine-Gordon equations. Applications of our codes to modulations of x- and
t-quasiperiodic wavetrains consisting of all kink-like modes are planned. These studies are relevant for
the generation of new phases as the modulation equations develop shocks.

7. Special examples of three-phase solutions

We now display some selected three-phase x-periodic wavetrains. These sine-Gordon solutions
correspond to choices of simple periodic spectrum, 3&)_;, which have been measured via the direct
spectral transform in numerical studies [10, 11] of chaotic attractors for the damped and periodically
driven s-G equation. On an x-interval of length 12 for specific perturbation parameter values, the
space—time attractor in ref. [11] consists of a chaotic flow among coherent spatial waveforms. Overman’s
DST code [15, 16] indicates that at each time step ¢, these waveforms are remarkably well approximated
by a three-phase simple periodic spectrum, 3®(q(x,,)) = Z§)_,.

There are two essential nondegenerate types of 253)=3 observed, described in cases 1 and 2 below, in
which the continuous spectrum is either connected (a “cross” spectrum) or disconnected (a “gap”
spectrum). These two types of three-phase simple spectra are “separated” by a degenerate one-phase
spectrum, 3§)_,, in which two pairs of simple periodic eigenvalues have coalesced off the real axis to
create a conjugate pair of nonreal double periodic eigenvalues. This degenerate simple spectrum 3§
corresponds both to s-G solutions which are unstable single-phase wavetrains and to homoclinic three-phase
wave-trains which are homoclinic (as |¢| — «) to the single-phase solution. These homoclinic solutions
are intermediate states between the three-phase solutions of case 1 and case 2.

Our motivation in this section is to: (i) provide two types of sets 2£)_, which are bona fide simple
periodic spectral sets on an x-interval of length L = 12; (ii) graph the wavetrains for each type of 3¢_,;
(iii) find near-homoclinic limits of 3¢_, for period L = 12 which are nearby a homoclinic single-phase
spectrum 2%_, with one pair of nonreal double periodic eigenvalues.

In each case below, we begin with the DST data from Overman’s code which yields 3{_, on length
L =12 for which the fixed L =12 constraints, (3.9d), are satisfied to within five decimal places.
Overman’s PDE integrator imposes even boundary conditions in x, which forces the continuous
spectrum (and the discrete periodic spectrum) to obey the symmetry

E e3P = 1/16°E, €3, | (7.1)
This symmetry allows for two classes of 3¢_, (recall eq. 6.8 for N = 2) given by

S0 ={E, =Ef =%, E;=Ef =re'%:, Es;=E¢ =(1/16"r)¢'*2,0 <, ¢, <7, 0 <r < 5}
(7.2a)
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Fig. 33. The qualitative structure of the spectrum (in the upper half plane) with the symmetry (7.1) is shown: (a) the “cross”
configuration, for eq. (7.2a), and, (b) the “gap” configuration, for eq. (7.2b).

and

S5y ={Ej=1e%, j=1,...,6, dy;,= — by, }. (7.2b)

The symmetry (7.1) on the entire continuous spectrum restricts the curves of spectrum to a small number
of possibilitiecs. We have not yet implemented the direct computation of the spectrum via Hochstadt’s
formula (4.2) for N = 3. Therefore while we know the qualitative structure of the spectral curves, we do
not have the IST linearized stability information for this class of solutions. Nonetheless, Overman’s DST
codes indicate the spectrum for (7.2a) is the “cross” configuration (fig. 33a) and the “gap” configuration
(fig. 33b) for (7.2b), with no nonreal double periodic eigenvalues for length L = 12 (thus no instabilities).

Case 1. A 3-phase “cross” spectral configuration with connected X

SGLs={E = s¢e'®, Ey=re'*:, Eg=(1/16%r) e, Ef =E,; ;,j=1,2,3,
¢, = 0.509437, ¢, = 0.32901m, r = 0.056783}. (7.3a)

The IST algorithm from section 3 is implemented to yield

Kk, = —r,= 05236352, ky=0, . | (7.3b)
w, = —0.852612,  w,=0.705324,  w,=0.778968. ‘ (7.3c)

From (3.9d), we verify the fixed period L = 12 constraints are satisfied. The corresponding theta function
solution g,(x,¢) is depicted in fig. 34 corresponding to the qualitative spectrum in fig. 33a, drawn by
hand. We note that the waveform flows between a breather localized in the center of the interval and a
breather localized at the ends of the interval. (We have selected the phase shifts 0]-0, j=1,2,3, so that
q5(x,t) is an even function of x for all ¢.)
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Fig. 34. The three-phase solution with simple spectrum given by eq. (7.3a) is shown.

Case 2. A 3-phase “gap” spectral configuration with disconnected X

~¢a;_1» &1 = 0.402641, b5 = 0.2319957, 5 = 0.07804 ).

4’2;':

b

6

e, j=1,...,

L
16

)=3={Ej=

%

(7.4a)

The IST algorithm is implemented to find

(7.4b)
(7.4¢c)

K3=0,

0.52362,
0.86935.

K2=_

0.52362,

w, = —0.97769,

K1=

s = —wy =

w
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Fig. 35. The three-phase solution with simple spectrum given by eq. (7.4a) is shown. The two solutions correspond to the two
choices for the phase shifts which guarantee evenness of g;(x,¢) as a function of x for all ¢. The two solutions are related by a
translation in x by half a period. For our choice of the phase shifts, the solution is an even function of ¢ also.

For this “gap” spectrum (fig. 33b), there are two discrete choices of 0}) which guarantee evenness of
g4(x, ) as a function of x for all . Figs. 35a, 35b display these two discrete even three-phase periodic
solutions: fig. 35a with the breather oscillating in the center of the interval for all time, fig. 35b with the
breather oscillating in the ends of the interval for all time.

Case 3. “Near homoclinic” spectral configurations ‘
In this example, we consider the limit E; = E5 and E, = E,, so that the periodic spectrum is very close
to a one-phase simple periodic spectrum, 3§)_, = {z €'*1, & e~1*1}, for which E;,=E;=E¢, E,=E,=
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Fig. 35. (continued)

(E{)* are complex double periodic eigenvalues.

Near-homoclinic gap configuration

0.266372, ¢5=0.265797w}.
(7.5a)

~ -1, ¢ =0.461011m, ¢,

76’ ¢2]

1,...

e'%, j

~{E=%

=3

3¢
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7,(6¢

Fig. 36. The three-phase solution with simple spectrum gi{'en by eq. (7.5a) is shown.

We compute from the IST algorithm:

K, = —K,=0.5235964, Kk;=0, o M AT (7.5b)
w;=-089992, ©,=-—w;=0.851912. \ (7.5¢)

The corresponding x-period is L = 12. The waveform ¢,(x, t) and spectral configuration are depicted in
fig. 36.

Notice how the waveform qualitatively consists of a spatially uniform oscillating background with a
breather localized in the center recurring approximately every 130 times units. (This recurring breather
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mode can also be moved to the ends of the interval by a discrete phase shift.) In the limit as
E,— E{(¢,=¢s), the three-phase simple spectrum 3§, limits to X{_, ={e", ze ', ¢, =
0.4610111)}. Recall the one-phase example of section 5, figs. Sb, 6b, 7b, which is identical to this 2§,
and for L = 12 we find this 3§, has one pair of complex double periodic eigenvalues at ¢ = 0.266083 1
on the circle of radius of .

Near-homoclinic cross configuration

SO s ={E,=Ef =5¢'%, E;=Ef =re'%:, E,=E} = (1/16%r) e'%,

¢, =0.461011m, ¢, = 0.266107, r = 0.062}. (7.6a)
In this limiting regime we find

K = —Ky=05236016, Kk;=0 (7.6b)

o, = —0978213, ©,=0811571, w,= —0.844892. | (7.6¢)

Notice how this limiting waveform (fig. 37) again has x-period L = 12 consisting of a spatially uniform
oscillating mean and a breather mode localized alternatively in the center and at the ends of the interval
recurring approximately every 185 time units.

These near-homoclinic solutions, figs. 36 and 37, are the saturated 3-phase nonlinear states corresponding
to the modulationally unstable 1-phase solution of figs. 5b, 6b, 7b. That is, consider a numerical simulation
of the integrable s-G PDE, with even periodic boundary conditions on a length of L = 12. Let the initial
data (g(x), q,(x)) be given by this single-phase spatially uniform solution of figs. 4b, 5b, 6b, with an
arbitrary &(e), 0 < e < 1, perturbation e(q,(x), g,,(x)). The numerical integration of the integrable PDE
will then look like either fig. 36 or a discrete x-translation of this figure by L /2 or fig. 37. Moreover, one
may observe all three possibilities by varying the small perturbation e(q,(x), g,,(x)). (In private studies
with Overman, we have verified these theoretical facts.) It is precisely this “saddle point” structure
illustrated by the modulationally unstable one-phase solution, with the associated homoclinic orbit
separating the two distinct yet equally likely saturated states of figs. 36 and 37, that forms the basis of our
analysis of chaos in the perturbed integrable PDE. This is but one example of modulationally unstable
N-phase waves and multiple-component homoclinic degrees of freedom in the integrable sine-Gordon
phase space F (&),

8. One-phase limits and soliton limits of two-phase wavetrains

In section 7 we illustrated a three-phase (2§_;) to one-phase (2{_,) limit, in which two conjugate
pairs of simple periodic eigenvalues coalesce into one pair of non-real double periodic eigenvalues. In
this limit, the theta function solutions (3.19) only capture the one-phase solution associated to 3§,
although there are homoclinic solutions with the same spectrum due to the nonreal double periodic
eigenvalues E {‘,(E{’)* with positive growth rate (section 5, figs. 4b, 5b, 6b). The existence of homoclinic
solutions is supported by the near-homoclinic limits in section 7, figs. 36 and 37: one observes &(1)
coherent spatial structures which recur (appear, then disappear) on long time scales, and the
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Fig. 37. The three-phase solution with simple spectrum given by eq. (7.6a) is shown.

recurrence-time scales as log |E, — E5| ~'. Between these recurrent breather-like modes, the wavetrain is
identical to the single-phase uniform solution in fig. 4 computed from %¢_,.

There are two additional limits we want to illustrate from the two-phase solutions of section 6: (1) a
two-phase to one-phase limit in which one pair of simple periodic eigenvalues is pinched together along
the positive real axis; and (2) a soliton limit in which the spatial period goes to infinity as the two pairs of
simple periodic eigenvalues are pinched together off the positive real axis. We will only illustrate a
near-breather limit as the simple eigenvalues coalesce off the real axis; the corresponding double kink,
kink—-antikink, or double antikink solitons occur as the simple eigenvalues coalesce along the negative
real axis.
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q,(x.t)

Fig. 38. The two-phase solution with E; = E} =

00000 %el'n'(OA()lOll)’ E3 =E4 — %elw(0.001111), Ky = —0662505, Ky

tlrn v =0, w; = —w,= —0.869999, is shown. Note that the solution
€ '2221 is very close to the one-phase solution in fig. 4b.

8.1. Two-phase to one-phase limits

We begin with 3_, of the form in example 6.1, section 6, 3§_,={xe!%, j=1,...,4, ¢,= —¢,,
b= —b;, &, > ¢3) We then consider the limit as ¢, and ¢, go to zero, where E(S) -3¢, of the
type computed in figs. 4-5 of section 5.

In fig. 38 we graph the 2-phase solution g,(x,t) corresponding to ¢, = 0.46011w and ¢, = 0.00117.
The limiting one-phase solution for which ¢, =0, ¢, = 0.461011w appears in figs. 4b, 5b.

One observes that this is a regular limit in which the amplitude due to the nearly coalesced E; and E,
is uniformly bounded on the order of the radian measure of ¢,.

8.2. Two-phase breather wavetrain to breather soliton limit

Another distinguished limit occurs when the spatial period goes to infinity while the temporal
frequency remains bounded, and the coherent spatial structure becomes localized inside of its ever
increasing period. This is the soliton limit and is achieved by coalescing two simple periodic eigenvalues
into a pole of the transfer matrix rather than a double periodic eigenvalue.

We illustrate this limit in fig. 39 from the family of example A.1, section 6, and in fig. 40 from the
family of example A.2, section 6. For fig. 39, we have chosen

253):2 = {-llg et j=1,...,4, br= =, py= —;, P, = 17(% + 8), ¢;= Tr(% — 5), 6= 0.0000278}.
(8.1)

For fig. 40, we have chosen

3 ,={E,=Ef=re®, E,=E} = (r/16%)ei®, r = 1—’6(1 —€), ¢ =7/3, e =0.0048}. (8.2)

In this limit, the imaginary part of the B matrix diverges logarithmically. Since we compute a ratio of
theta functions, and factor out the maximum term from each theta series, this divergence does not pose
any computational difficulty for the examples presented here.

In each case, (8.1) with fig. 39 and (8.2) with fig. 40, the near-soliton breather has maximum
amplitude = ¢, + ¢; = 2w /3, which is the amplitude for an infinite-line breather soliton with poles in
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Fig. 39. For the two-phase solution with E; = E¥ = 5 e!™0333300) p _ pa = L oim0333361) o = (144465, k, =0, 0, = ~w, =
1 2 3 16 1 2

—0.8660, we show (a) the spatial structure of g,(x,¢,) at selected times ¢, =n(T/8), n = —4,-3,...,4, T="7.25535, (b) the
surface g,(x,¢) over one x-period and two temporal periods.
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Fig. 40. For the two-phase solution with E, = E¥ = 0.0622¢'™/3, E, = E} = 0.0628015¢'™/3, k; =k, = —0.114376, w, = -—w,=
~0.86603, we show (a) the spatial structure of g,(x,¢,) at selected times ¢, =n(T/8), n= —4,-3,...,4, T =17.25517, (b) the
surface g,(x, ) over one x-period and two temporal periods.

the scattering matrix at E = % ei"/3 L e~i"/3 Notice, however, that the limiting breather waveform
from the spectral class (8.1) has one breather per period whereas the limiting waveform in spectral class
(8.2) has two breathers per period. In fact, the sine-Gordon energy, H = [f[3(g? + ¢*) + 1 — cos qld x,
in fig. 39 is exactly one-half the energy in fig. 40. The limiting breather frequency in these examples is
2w /T, where the t-period T = 7.2552.

The above examples of figs. 39, 40 are standing breathers in the near-soliton limit. These solutions are
even in x and do not translate as they “breathe”. To achieve breather solitons which translate and
breathe we must break the E — 1/162E symmetry in the spectrum. We illustrate such an example in fig.
41 where E, = E; = 0.045¢'"/3, E, =~ 0.045e¢~"/3, which produces a breather moving to the right with
velocity v = —0.163.

In fig. 42 we choose a near-soliton spectrum 3¢_, which is the inversion of the fig. 41 spectrum
through the circle [E| = &: E, = E; = [1,/16%0.045)]e'™/3, which produces an identical breather to fig.
41 except the phase velocity v = 0.163, so that the breather travels to the left.




R. Flesch et al. / Inverse spectral transform for the periodic sine-Gordon equation

229

25.0

q,(x.t)

time
0.0

<
8 E
25.0 ]

!
0.0 5.0
} X
Fig. 41. For the two-phase solution with E; = E3 = 0.045¢!™0309 p - p& = (00450361 0, = —0.39673, x, = —0.14288,
o, =0.91905, w, = —0.87772, we show (a) contour levels of the surface g,(x,t), (b} the surface g,(x,t) for —5<x <35 and
—25 <t < 25. Note that the solution is quasiperiodic in x.
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Fig. 42. For the two-phase solution with E; = E3 = 0.0086806¢"0309  F, = F¥ = 0.086806¢ ™03%1D . = —0.11096, «, =
—0.14288, w; = 0.83640, w, = —(.87772, we show (a) contour levels of the surface g,(x,¢), (b) the surface g,(x,t) for —5<x <5
and —25 <t < 25. Note that the solution is quasiperiodic in x.
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9, Conclusion

We have displayed periodic one-, two- and three-phase sine-Gordon wavetrains as generated by the
IST algorithm. Along the way, we have also computed those spectral theoretic ingredients which are
fundamental to x-periodic solutions, both in labelling instabilities and in computing linearized growth
rates.

These numerical calculations have been helpful in clarifying several theoretical and experimental
results for the periodic sine-Gordon equation. For example, we have provided an explicit 2-phase
x-periodic family of solutions which are potentially unstable due to non-real double periodic eigenvalues
but which have zero growth rates in these modes. Our theoretical results [17] imply that the next higher
sine-Gordon flow must have an instability in this mode for solutions with this spectrum. Until these
computations, we did not have any examples of this type. In section 7 we have illustrated the integrable
three-phase periodic wavetrains which are observed in previous studies [10, 11] of chaos in the perturbed
s-G PDE. The “cross” and the “gap” spectral configurations that accompany the distinct 3-phase even
breather trains provide a definitive measure of the homoclinic crossings referred to in our nearly
integrable chaos studies {10, 11]. These figures confirm the qualitative difference in the solutions that is
so evident in the spectrum: the “cross” spectrum yields solutions where the breather passes from the
center to the wings, whereas the “gap” spectrum yields either a breather at the center for all time or a
breather in the wings for all time, and the choice is made depending on a discrete parameter. We refer
to ref. [22] for a topological interpretation of these results.

The IST solution algorithm is clear and straightforward, as described herein for the sine-Gordon PDE
and likewise for all integrable equations whose theta function solutions are defined with respect to
hyperelliptic Riemann surfaces (e.g. Korteweg—de Vries, non-linear Schrodinger, the Toda lattice, and
the sinh—Poisson equation whose doubly periodic solutions yield non-spherical surfaces of constant mean
curvature which can be imbedded in R3). Two potential numerical difficulties arise from either (i) the
computation of period informatien on the Riemann surface defined by IST input data or (ii) the
summation of N-fold theta series. In this paper we have shown a general prescription that resolves these
difficulties in the hyperelliptic case. The remaining obstruction is in prescribing the set 3§ of simple
periodic eigenvalues corresponding to an N-phase x-periodic wavetrain. That is, one cannot a priori give
3. Rather, it is necessary to search a real 2 N-dimensional space for N-dimensional subsets which meet
the N transcendental fixed period constraints. However, wavetrains quasiperiodic in x and ¢ do not pose
any difficulties whatsoever.

The limiting cases of singular Riemann surfaces, which arise as two pairs of simple periodic
eigenvalues coalesce off the real axis, have not been computed at the limit configuration. We have,
however, illustrated how our codes apply very near this limit. The solutions that we therefore have not
displayed here, corresponding to non-real double periodic eigenvalues, are homoclinic solutions [17].
These homoclinic orbits exist for the periodic sine-Gordon and focusing nonlinear Schrédinger equations
[17, 23] and may be computed with a slight embellishment of the present paper, employing Baker
eigenfunctions of the linear system (1.3).
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