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Classical and quantum analysis of chaos in the discrete self-trapping equation
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We study the discrete self-trapping model, for three degrees of freedom. The fraction of the ener-
gy shell of the phase space that is chaotic is evaluated directly from the classical motion and also
from the exact energy levels of the corresponding quantum system. The correspondence between

classical and quantum results is discussed.

I. INTRODUCTION

Several years ago the discrete self-trapping (DST) equa-
tion was introduced as a potentially interesting model of
nonlinear dynamics.! In simplest terms, the system
comprises f anharmonic oscillators (freedoms), which are
coupled through linear dispersive interactions. More
specifically, it takes the form

.d
l—_wo
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(1.1
where A is the column vector

A=col(4,,4,,...,4;) (1.2)

of complex components. With the dispersive parameter €
and the anharmonic parameter ¥ both equal to zero, Eq.
(1.1) represents a system of f noninteracting, harmonic
oscillators each of frequency w, In the general case
{e7#0 and y+0), the dynamics of Eq. (1.1) exhibits the
effects of both anharmonicity and dispersion. This in-
teraction can lead to either self-trapping (i.e., local modes
or solitons) or chaos or a mixture of self-trapping and
chaos depending upon the parameters and initial condi-
tions that are chosen.'

The original motivation for studying the DST equation
arose from theoretical studies of vibrational energy self-
trapping in protein®® and related experimental studies in
hydrogen bonded, polypeptide crystals.** In these appli-
cations the number of degrees of freedom (f) is rather
large: ca. 200 for a typical protein and much greater for
an experimental polypeptide crystal. In order to gain
theoretical perspective, initial attention was directed to-
ward the DST with a few degrees of freedom, which is
closely related to the study:of anharmonic vibrations in
small molecules [water, ammonia, methane, benzene, etc.
(Refs. 6 and 7)]. During the course of these “chemical”
investigations a quantum theory for the DST equation
was developed®® and has proven to be remarkably accu-
rate and straightforward to apply.'°

Our aim in this paper is twofold. First we augment
previous studies of classical chaos exhibited by the DST
equation;"!' 71> and, second, we relate these studies to
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the corresponding quantum analysis. Thus our work
should be considered in the context of growing interest in
“quantum chaology”,'*~%° but we believe that it is of par-
ticular interest for the following reasons. (i) The DST
equation is a good model for anharmonic molecular vi-
brations*~° and is therefore of considerable technical in-
terest. (ii) As will be explained in the following, the quan-
tum DST system can be analyzed without truncating
infinite wave function expansions;®”!° thus the only er-
rors in computing energy levels are numerical. (iii) The
quantum DST system has an anharmonic parameter—7y
in Eq. (1.1)—which can be independently varied as one
approaches the correspondence limit. These last two
properties are shared by the spin system analyzed recent-
ly by Nakamura and Bishop.”® Motivated by the known
mapping between an integrable nonlinear Schrodinger
equation and an integrable spin system,”’ Bishop has sug-
gested that a mapping may exist between his noninte-
grable spin system and the DST equation.”? We have
studied this question in some detail and have been unable
to find such a mapping. Even if one were to be found,
however, we feel that property (i) of the DST system
would be sufficient to justify the results presented here.

To appreciate the ease with which the DST system can
be quantized,®!® we note that it has two conserved quan-
tities, the number

f
N= 3 14, (1.3)
i=1
and the energy
/ /
H=wN—iy 3 14,*—e3m;A*4; . (1.4)
i=1

i#j
Under quantization, the complex mode amplitudes
(A* and A;) become boson creation and annihilation
operators (B T and ﬁi ).
With full symmetrization of the operator products Eq.
(1.3) becomes the number operator

N= S (B'B,+

B,+1) (1.5)
1

~|—=

I M~

and Eq. (1.4) becomes the energy operator
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S A
H=(w,—1y)N—1iy 2

—ezmuﬁ Iﬁj . (1.6)

i#j

A and N operate upon wave functions of the form
lny Y ny). .. .|n,) which, for typographical convenience,
we write as [ny,n,,. .. .n].

Thus the quantized discrete self-trapping (QDST) equa-
tion describes an assembly of bosons.” It has been dis-
cussed in some detail for nearest-neighbor interactions in
the limit y <<€ and f— 024726 This is the limit in
which the classical DST reduces to the nonlinear
Schrodinger equation.?’

Stationary states of the QDST equation must be eigen-
functions of both N and A. As in Refs. 7 and 8, the wave
function, |, ), is chosen to be a linear combination of all
possible states of n particles, leading to a matrix equation
for the column vector consisting of the coefficients in this
expansion.

It is now well established that classical solution trajec-
tories of Eq. (1.1) for three or more degrees of freedom
(f23) can be either chaotic or quasiperiodic for ap-
propriate values of the dispersive and anharmonic param-
eters, € and y."%!'"13 Here we study the system for
Jf =3 with the dispersion matrix

011
eM= 11 0 1
110

(1.7

from the perspectives of both classical and quantum dy-
namics.

Results of the classical studies are presented in the fol-
lowing section. Here we estimate the fraction of phase
space occupied by chaotic trajectories, which we call p_.
Quantum results are presented in Sec. III. We use tools
that have been developed by Berry to estimate again the
chaotic fraction of phase space, called p,.” If these tools
are valid we expect p, —p, as n — %, the correspondence
limit. The degree to which we are able to confirm such a
correspondence is discussed in the concluding section.

II. CLASSICAL ANALYSIS

The DST equation for one degree of freedom reduces
to a nonlinear oscillator and the solution is sinusoidal.
For two degrees of freedom, we have two conserved
quantities and again the system is integrable. Indeed, it
has been shown that it can be reduced to the pendulum
equation.’®?* Here we shall confine ourselves to the three
degrees of freedom DST which are not integrable.
Indeed, chaotic trajectories have been found."!'~ 13 The
latter studies were done fixing a specific initial condition
and varying the nonlinearity parameter ¥. In a particu-
lar case, by varying v, regular trajectories were encoun-
tered in a narrow window amidst chaotic ones.!> Howev-
er, because these results are valid for one particular initial
condition, one cannot claim that such a regular window
is a generic feature for this narrow range of values. To
do so, one must use a global indicator which probes the

entire energy shell. Such an indicator is p,, which is
defined as the fraction of the energy shell E, which is
chaotic.*

In the case of DST, the phase space must be restricted
to the constant N surface as well as the energy shell E
when the classical results are compared with quantum re-
sults.

Two methods of evaluating p. have been investigated.
Meyer relates an integral over the energy surface to an in-
tegral over the Poincaré section.’® Implicit in his deriva-
tion is the assumption that all trajectories on the energy
surface intersect the Poincaré section. We have not
found any Poincaré section for which this assumption is
valid in our system and suspect that in general it is not
true.’! For this reason we have adopted a second method
to evaluate p,.

The second method, on which all of our classical re-
sults are based, is a Monte Carlo evaluation®? of p,. We
choose a number of random initial conditions which are
uniformly distributed on the energy surface. These initial
conditions must also have the same value of N. The frac-
tion of these initial conditions which leads to chaotic tra-
jectories is then our estimate of p,.

The obvious test of whether or not a trajectory is
chaotic is to calculate the maximal Lyapunov ex-
ponent,*®3? but because of excessive computational costs
we chose instead to determine whether or not the trajec-
tory is chaotic by examination of a Poincaré section.

In Fig. 1 we show a Poincaré section representative of
those which are encountered when the determination of
chaotic versus regular is made. The dots in the figure all
belong to a trajectory, which is labeled chaotic. The
crosses, which form a nearly closed curve, belong to a
quasiperiodic, i.e., regular orbit. For two energies
(yE=—0.1and yE = —0.6) we examined both the max-
imal exponents and the Poincaré sections. Good agree-
ment on the value of p, was obtained.

In roughly 95% of the sections studied, the determina-
tion of whether or not the trajectory is chaotic is quite
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FIG. 1. Poincaré section of regular ( X
jectories. (P;=0.1,yN=3,yE=-2.4.)

) and chaotic (H) tra-
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unambiguous as in Fig. 1. Any errors introduced in this
way are small in comparison with the statistical error as-
sociated with the Monte Carlo method.

Instead of working with the original variables, 4; and
A}* (which are canonical variables with respect to the
Hamiltonian — iH), we have made the following transfor-

mation to canonical variables:
— —i(py )

=VP1e ! ¢1 ¢3
A,=V P,e

=v/P,—P,—Pye

, 0<P,<N,

—i(d,+dy)
"9 0<p, <N,

—ig,

2.1

!

, 0<P,+P, <N,
leading to the Hamiltonian
H(¢,P)=—1y[P1+P}+(N—P,—P,)]
—2¢[V/P Pycos(d;— )
+vP,(N—P,—P,)

P, )cosé,
+VP2(N—P1 _P2)COS¢2] y

2.2)
where P, is the momentum conjugate to ¢,,i=1,2,3. In
this description the momentum P, is in fact the con-
served quantity N. Hence ¢; is an ignorable coordinate.

Thus the equations of motion become

8H aH
aP1 $2= ’
dH oH

p=—M - OH
e

(The time evolution of ¢,, which is determined by the
equation ¢,=3H /ON may be chaotic.) Note that Eq.
(1.1) is invariant under the transformations
A;—a 4, y—»a_zy, N—a’N, and H—a’H. Since YN
and y H are unchanged under these transformations they
arel 2used to specify the number and the energy, respective-
ly.

For the purpose of computing p,, the preceding trans-
formation effectively reduces the number of degrees of
freedom from three to two. The initial conditions are
randomly distributed over the energy surface
H(P,P,,¢$,,6,)=E. Thus, ¢, becomes a function of
Py, P,,and ¢,.

The random initial conditions for P,, P,, and ¢, are
weighted by the projection of the surface element

(P, Py,¢1,87)— (P, Py, ).

Thus p, can be calculated from the trajectories deter-
mined by (2.3) for any fixed values of yE and yN. (The
value y N =13 is chosen throughout.)

Figure 2 shows our results for p_, based on 50-100 tra-
jectories (vertical error bars), as well as the corresponding
quantity, Py (horizontal error bars), in the quantum-
mechanical case considered in Sec. III. The error bars in
p. are determined as the 95% confidence interval of our
estimate of p.. In the limits of high and low y E the DST
equation is integrable. As a consequence, p.—>0 in these
limits is seen in the figure. Local minima are found at
yE ~ —4.2 and —3.8, which may be interpreted as win-
dows of less chaotic behavior. However, the window for

6=

1.0
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FIG. 2. p.(B) and p,(—) as functions of energy y E for fixed
yN=3.00. Error bounds indicated by vertical and horizontal
bars. n=2310in the QDST giving a total of 8164 energy levels.

YE=—10.99 and yN=4.5 reported in Ref. 13 was
found to give a value p.~0.73—0.98. Thus, although
the particular initial condition considered was regular for
the latter values of YN and y E, about 90% of the energy
shell is actually occupied by chaotic trajectories.

III. QUANTUM ANALYSIS

In this section we study the quantum counterpart of
the DST equation with three freedoms. Studies of energy
spectra of quantum systems have shown that the density
of spacings, S, between uncorrelated, adjacent energy lev-
els, p(S), can be used as an indicator of chaos or regulari-
ty in the corresponding classical systems.'*™ 1832738,

When the classical phase space is partitioned into regu-
lar regions and only one chaotic region the following in-
terpolation formula has been proposed:*

pi(S)=exp | =(1=p,)S = p}S’
(1—p,)exp —pqS2 erfc —Cpq
+2(1—p,)p, —pqS (3.1

Here p, is the fraction of the energy shell that is chaotic.

Equation (3.1) interpolates between the Poisson distri-
bution (for the quantum counterpart of the regular classi-
cal system* ) and the Wigner distribution [corresponding
to the chaotic classical system (Ref. 14)].

Equation (3.1) shows how the fraction of the energy
shell that is chaotic in the classical system can be deter-
mined from the energy levels of the corresponding quan-
tum system. Its use implies the assumption that all
chaotic regions are connected. In the case of the DST
equation with three degrees of freedom, which effectively
is a system with two degrees of freedom (see Sec. II), this
must be assumed in order to make a unique fitting to the



available data. Hence Eq. (3.1) is used as an approxima-
tion.'®

Above we have specified that the spacings distribution
should be done with uncorrelated energy levels. By un-
correlated we mean levels that evolve independently
when parameters in the Hamiltonian (such as nonlineari-
ty y) are varied. In the case of the DST model this
means, for instance, that states corresponding to different
n values must not be mixed. Also, and generally for all
Hamiltonians that possess symmetry properties, the ener-
gies must be separated according to the symmetry group-
in order to avoid degenerate levels.

The results shown in this article were obtained from
energy sequences corresponding to the symmetric states,
the number of which is 1+int[n(n +6)/12].1° A final re-
mark is that the spacings distribution should be deter-
mined from an energy sequence that possesses a large
number of energy levels in a short energy range. This
usually implies large quantum numbers and correspond-
ingly large matrices to diagonalize, which is impossible in
practice. Energy sequences with lower density of levels
can also be used, provided they have been scaled previ-
ously into other sequences that have constant density. In
this way the secular variation in the density is eliminated
in order that the short range (expressed by the spacings
distribution) be brought to light.**

Figure 2 shows the variation of p, with yE (for
yn=3). Each p, value is calculated from a sequence
with 2000 levels, the energy E being the average energy
and the error being the corresponding standard devia-
tion. Superimposed on them are the values of p,. Our
numerical calculations show that at least 1500 levels are
needed for reliable statistics.

The quantum results confirm the trend of the classical
ones. However, the correspondence is not as good as that
found by previous authors.'> %3438 One reason may be
that with the value of n used, the density of levels is not
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large enouch (a fact that is expressed by the horizontal
error bars). A clear divergence from the classical result is
observed in the low Y E limit. This is due to the particu-
larly low density of quantum levels in this region (with
the correspondingly larger horizontal error bars). Our
conclusion is that in the low y E region, for the values of
n used, the p, determined cannot be trusted. In the other
regions, on the other hand, the quantum calculations cor-
respond to an averaging over a range of classical energy
shells. This leads to a loss of the more detailed structure
indicated by the classical calculation.

IV. CONCLUSIONS

The fundamental aim of this paper is to study quantum
and classical determinations of the chaotic fraction of the
energy shell in phase space for the discrete self-trapping
equation with three degrees of freedom. The classically
computed fraction is called p,., and the fraction deter-
mined quantum mechanically using the procedure out-
lined by Berry and co-workers?»**3* is called p,.

Our results are presented in Fig. 2. In the intermediate
range of energy, where p_=p =1, the agreement seems
to be within the error bars. At the extreme values of en-
ergy, however, the agreement is not good. This may be
because the system is not generic® at the extreme values,
or because the number of levels chosen (8164) is not
sufficient.
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