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We introduce the dynamic nonlinear optical skin effect in which a pulse incident on a saturable ab-
sorbing interface is self-reflected from a moving absorption front. The motion of the front causes the
self-reflected wave to be red-shifted by the Doppler effect, which in turn serves as an experimentally
observable signature for the front propagation.

In the linear optical skin effect a pulse incident from air
is reflected from a highly absorbing interface after pene-
trating only a fraction of a wavelength into the absorbing
medium, this distance being the skin depth [1],[2]. The
skin effect is therefore of fundamental importance in un-
derstanding the electrodynamics of pulse propagation at
condensed matter interfaces, such as metals for field fre-
quencies below the plasma frequency [2] and semiconduc-
tors with highly absorbing excitonic features [3]. In addi-
tion, it belongs to an important class of optical problems
for which the notion of an electromagnetic field envelope
varying slowly on the scale of a wavelength simply does
not apply. The skin effect cannot be understood on the
basis of envelope equations but is rather a consequence
of Maxwell’s equations for the interface.

In this Letter we introduce the dynamic nonlinear op-
tical skin effect for pulses and elucidate the underlying
physics. In the nonlinear skin effect a high intensity pulse
is incident upon a nonlinear absorbing interface. Broadly
speaking, saturation of the absorption allows the incident
field to penetrate beyond the linear skin depth into the
medium, and this causes an absorption front to propagate
into the medium which separates the regions of low (sat-
urated) and high (unsaturated) absorption. The front is
excited by the incident pulse which is in turn reflected
from the sharp absorption front, yielding a self-reflected
pulse [4]. Thus the absorption front acts as a moving mir-
ror from which the pulse is self-reflected, and the pulse
suffers a red-shift due to the Doppler effect [5]

Continuous wave (cw) self-reflection from stationary
absorption fronts for plane wave [4] and transverse Gaus-
sian [7] fields incident at sharp and smooth [6] interfaces
has been studied theoretically but not experimentally
verified so far. In part, this is due to the extremely high
absorption and strong saturation required for its manifes-
tation, but the difficulty of obtaining good experimental
signatures should not be overlooked. Here we explore
the transient regime using the two-level Maxwell-Bloch
equations. In particular, we show that moving fronts are

excited by the incident pulse [8],[9] and that the self-
reflected pulse bears clear spectral signatures due to the
Doppler effect, which should be observable experimen-
tally.

We consider the time-dependent propagation of a lin-
early polarized plane electromagnetic wave incident on
a nonlinear medium composed of two-level systems. For
propagation along the z-axis, and taking the electric field
polarized along the x-axis, Maxwell’s curl equations take
the form [1],[2]
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where Dy = µ0Hy. The specification of the problem is
completed with the constitutive relation Dx = ε0Ex +Px

where Px is the optical polarisation. To elucidate the
basic physics we employ a two-level model to describe
the optical response with lower electronic state |1〉 and
upper state |2〉. The Bloch equations are then (see for
example Ref. [10]
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where ρ21 is the off-diagonal density matrix element, n =
(ρ11−ρ22) is the population difference between the lower
and upper states, ω21 is the transition frequency, p is the
dipole moment in the field direction, and γ1 and γ2 are
phenomenological damping constants for the population
and polarisation, respectively. The polarization due to
the atoms is then given by Px = N(z)p(ρ21 + c.c) with
N(z) the density of two-level systems which varies along
z in general.

Equations 1 and 2 are solved using a standard dis-
cretization scheme described by Yee [11] and the Bloch
equations integrated in time using a fourth-order Runge-
Kutta method. The initial condition for the field is

Ex(z, t = 0) = E0cos[2πω(z − z0)]e−(z−z0)
2/(ct0)
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along with a similar expression for By with B0 = E0/c.
Here E0 is the peak input electric field, ω = 2πc/λ0 is the
central pulse frequency, τ = 2t0 is the full-width at the
1/e2 points of the pulse intensity profile in time units,
and z0 is the position of the pulse center at t = 0. The
nonlinear interface was imposed by tailoring the density
profile N(z) = θ(z − zint)N0, with zint the longitudinal
position of the interface. The medium was initialized us-
ing ρ21 = 0, and n = 1 in the medium. When initializing
the field we ensured that the field protruded negligibly
into the nonlinear medium at t = 0.

In the limit of cw fields, as previously studied by Roso-
Franco [4] the self-reflected wave arises when the normal-
ized parameters,

ψ =
p2N

ε0h̄γ2
, F =

pE0

h̄(γ1γ2)1/2
(4)

are both greater than unity. Physically, ψ determines the
linear absorption per wavelength, αλ0 = 2πψ, and this
quantity should be greater than unity for the linear skin
effect. For saturation of the absorption and self-reflection
F > 1 is required, since F 2 is the peak incident field
intensity normalized to the cw saturation intensity.

We consider the transient regime in which the incident
pulse width t0 is much shorter than the population re-
laxation time 1 = γ−1, but longer than the polarization
dephasing time T2 = γ−1

2 . For concreteness we adopt the
following specific parameters, ω = ω21 = 2×1015rads−1 ,
t0 = 300 fs, T1 = 0.5 ns, T2 = 50 fs, p = 5ca0 = 4×10−29

Cm, N0 = 4 × 1019 cm −z and −z0 = −225µm. For
these parameters ψ = 3.8 so that the linear skin effect is
expected at low input intensities. We have numerically
verified that this is indeed the case, and the input pulse
suffers minimal distortion in profile or spectrum upon re-
flection. Figures 1(a) and 1(b) show an example of the
calculated pulses at two different times for a peak input
field of E0 = 1.6 × 108 V/m. Although our calculations
employ the full field, we display only the envelope ob-
tained from joining the peaks as shown by the solid line,
since it is not possible to resolve the carrier in the plots.
The field strength is associated with the scale shown on
the left-hand-side of the plots. In Fig. 1(a) for t = 1.68ps
the peak of the input pulse has not yet reached the in-
terface at zint = 400µm, but one can clearly see the
leading edge of the pulse is penetrating only a short dis-
tance into the interface, as expected for the skin effect.
The dashed line in Fig. 1(a), which is associated with
the right-hand scale, is the local wavelength for the field.
This is determined numerically by calculating the local
wavenumber K via K2 ≈ −Eprime′

x /Ex, where a prime
signifies a z-derivative, and converting to wavelength. In
Fig. 1(a) the local wavelength remains constant at the
input value λ0 = 942 nm. In contrast, Fig. 1(b) shows
the field profile at a later time t = 2.75ps following re-
flection from the interface (for times between the results
shown in Figs. 1(a) and 1(b), the field profile shows
strong ringing due to interference between the incident
and reflected fields). The reflected pulse has developed a

FIG. 1: Calculated field profiles (solid lines) for E0 = 1.6×108

V/m and (a) t=1.68 ps before the field enters the interface
at z0 = 400µm, and (b) t=2.75 ps following reflection from
the interface. In plots (a) and (b) we show only the envelope
obtained from joining the field peaks. The field strength is
associated with the left-hand scale and is normalized to unity.
The dashed lines in (a) and (b) show the corresponding local
wavelength over the pulse, and are associated with the right-
hand scale. Fig. 1 (c) shows the corresponding pulse spectra.
The input spectrum is shown dashed and is associated with
the left-hand scale.

double-peaked structure (solid line), and become signif-
icantly chirped (dashed line). In particular, the central
portion of the pulse has a peak local wavelength of 990
nm, a significant red-shift. This red-shift is also evident
in the reflected pulse spectrum (solid line) shown in Fig.
1(c) corresponding to Fig. 1(b), along with considerable
spectral broadening and modulation (the input spectrum
is shown by the dashed line and is associated with the
left-hand scale). The results shown in Fig. 1 are typi-
cal of what we observe in our simulations in the nonlinear
regime, namely, distortion of the reflected field profile and
significant spectral modulation and associated red-shift.
To expose the physics underlying these phenomena we
show in Fig. 2(a) and 2(b) the spatial distribution of the
full field and the population difference n = (ρ22 − ρ11)
at various times corresponding to the results shown in
Fig. 1. Figure 2(a) shows that the field penetrates pro-
gressively further into the interface as the absorption is
saturated, as can be seen by comparing the field profiles
at t = 1.61ps (solid line) and t = 1.95ps (dashed line) or
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FIG. 2: Spatial distribution of a) the full field in the vicinity of
the interface at z0 = 400µm, and b) the population difference
n at times t = 1.61 ps (solid line), 1.95 ps (dashed line), 2.28 ps
(single-dot-dashed line), and 2.62 ps (triple-dot-dashed line),
where the front propagates to the right with increasing time,
and c) the numerically calculated absorption front velocity
normalized to c.

t = 2.28ps (single-dash-dot line) (at t = 2.62ps the field
has been mostly refelcted). At t = 1.61ps (solid line)
Fig. 2(b) shows that n = 0 before the interface signi-
fying zero absorption, and n = 1 beyond the interface
signifying large absorption due to the two-level systems.
At later times after the input pulse has penetrated into
the interface, the population difference is depleted and
the absorption front is seen to propagate into the non-
linear medium. The propagating absorption front main-
tains a sharp wavelength scale transition region so that
the linear skin effect still occurs but now from a mov-
ing absorption front. Thus the self-reflected field must
suffer a red-shift due to the Doppler-effect, akin to re-
flection from a mirror moving away from a source [5]. To
validate this physical picture we have determined the ab-
sorption front velocity from the numerical simulation in
Fig. 2(b), and the result is shown in Fig. 2(c). After
initially accelerating the front reaches a maximum veloc-
ity of vmax/c = 0.023 before decelerating back to zero
velocity. The maximum wavelength shift of the reflected
pulse due to the Doppler effect is then ∆λ/λ0 = 2vmax/c
for vmax/c � 1[5] or ∆λ = 43 nm for the free-space
wavelength λ0 = 942 nm used here. Thus, based on the
Doppler effect we expect a maximum local wavelength

of λ = 985 nm, in good agreement with the numerical
results in Fig. 1(b). The Doppler effect upon reflection
from the moving absorption front can therefore explain
the magnitude of the observed pulse wavelength chirp.

We are now in a position to further explain the physics
underlying the pulse profiles and spectra in Fig. 1: As
the leading edge of the input field penetrates into the
medium the absorption front accelerates and the local
wavelength of the reflected field increases, and on the
trailing edge of the pulse the absorption front decelerates
and the local wavelength decreases. This explains the ini-
tial rise and then decrease in the wavelength chirp in Fig.
1(b) (dashed line). Note that the field-profile in Fig. 1(b)
(solid line) exhibits a minimum at the same point that the
local wavelength peaks, and this begs a physical explana-
tion. A graph of the cw intensity reflectivity of the linear
interface [12] for the same parameter values used to gen-
erate Figs 1 and 2, shows that the reflectivity decreases,
relative to the pulse center wavelength λ0 = 942 nm,
for wavelengths red detuned from the resonance. This
is so because even though the absorption decreases the
skin depth increases, thus allowing more path length in
the medium over which absorption of the field can oc-
cur (the situation is more complicated for blue-detuning
but that does not concern us here). Thus the red-shifted
peak portion of the reflected pulse in Fig. 1(b) experi-
ences a lower reflectivity than the wings, giving rise to
the double-peaked reflected field. More quantitatively,
for the maximum red-shifted wavelength of λ = 985 nm
the reflectivity is reduced to 2intuited by realizing that a
red-shift of ∆λ = 43 nm corresponds to 4.6 linewidths (
γ2 ), and a significant reduction in absorption and reflec-
tion is to be expected. Furthermore, this physical picture
correctly indicates that for lower input fields the Doppler
shift is reduced, in which case the differential reflection
coefficient between the wings and center of the pulse need
not be as large as in Fig. 1(b). In this case the reflected
pulse can be single peaked, though still red-shifted.

An experimentally measurable signature of the double-
peaked reflected field in Fig. 1(b) is the modulated spec-
trum in Fig. 1(c). The reflected field is composed of two
peaks with a spacing ∆z ≈ 100µm. Treating these as
point sources in z, we expect a modulation in the wave-
length spectrum with a period d ≈ λ2

0/∆z = 0.009µ m,
which agrees reasonably with the modulation period in
Fig. 1(c). In the case that the reflected field is single-
peaked the reflected spectrum is red-shifted but with no
modulation.

While the slowly-varying envelope approximation
(SVEA) [[4] [12] cannot capture the physics of the
evolution of the self-reflected wave, we can employ
it to demonstrate front propagation in the medium
away from the interface. In particular, we intro-
duce the field and polarization envelopes via the def-
initions E = 1/2(ΛEEexpı(kz − ωt) + c.c.) and P =
1/2(ΛPPexpı(kz − ωt) + c.c.), where ΛE = h̄(γ1γ2)1/2

and ΛP = ıNp(γ1γ2)1/2 and, to obtain the usual
Maxwell-Bloch equations in the SVEA from Eqs. (1) and
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(2) [10]. For the case considered here with T1 � t0 > T2

, we may ignore the population relaxation, and in the
limit of small T2 adiabatically eliminate the polarization.
We then obtain the pair of coupled equations

∂I

∂z
+

1
c

∂I

∂t
= −α

2
nI ,

∂n

∂t
= −γ1nI , (5)

where I = |E|2 These equations admit travelling wave
solutions depending on the variable η = t − z/v, where
v is the front velocity [8]. Assuming a pulse profile with
I(−∞) = 0 and I(∞) = F 2, a constant, and a cor-
responding bleaching of the two-level system inversion
from the ground-state to transparency, n(−∞) = F 2 and
n(∞) = 0, we find the front solution

I(η) =
F 2

2
(tanh(η/η0) + 1) , (6a)

n(η) =
1
2
(1− tanh(η/η0)) , (6b)

where cη0 = 2c/γ1F
2 is the characteristic spatial width

of the travelling wave front, and the front velocity is given
by c/v = 1+ωψ/γ1F

2 [[8] [9]]. For the parameters above,
this gives vc = 0.026, which is smaller than the value re-
ported above due to neglect of the self-reflected wave in
the present calculation. Thus we have analytic confirma-
tion that absorption fronts can propagate in the nonlinear
medium, and we identify these with the fronts seen in our
numerical simulations. Numerical integration of the full
SVEA equations also clearly shows front propagation for
these parameters, but with a damped, oscillatory front
profile.

The nonlinear skin effect appears over a much broader
range of parameters than employed here. As in the cw
case we require the dimensionless parameters ψ and F to
be larger than unity so that there is a linear skin effect
and a high enough level of nonlinear absorption satura-
tion. In particular, we note that especially for longer

pulses, F can be substantially smaller than the value of
F = 320 in the example above, though the front veloc-
ities and spectra are correspondingly reduced. For the
pulse duration and material relaxation times, we require
T1 � t0 > T2 to obtain propagating absorption fronts,
where the condition t0 > T2 is imposed to avoid the
regime of self-induced transparency (the input pulse area
above is A = 1.76pE0t0/h̄ = 10.8π [[13]]. Given these re-
strictions, exitonic resonances in quantum well materials
are prime candidates for the observation of this effect,
where high absorptions and suitable relaxation times are
available [[3]]. It remains to see whether the high levels of
saturation can be achieved, and if under these condition,
simple two-level polarisation dynamics can be realised.

In conclusion, we have introduced the dynamic non-
linear optical skin effect for reflection of pulses from a
highly absorbing interface. This new basic effect for the
electrodynamics of interfaces combines the concepts of
self-r eflected waves [[4]] and front propagation, and is
also a prime example of a nonlinear optical phenomenon
where the SVEA fails and the full Maxwell equations
must be employed. We have shown that the nonlinear
optical skin effect arises from moving absorption fronts
so that the red-shifting and spectral modulation of the
reflected pulse are clear experimental signatures of the
effect.
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