
Chapter 3

Collective-Coordinate
Perturbation Theory

Having reviewed many of the perturbation theories used to study soliton dynam-
ics, we develop a new method based on a canonical transformation developed by
Tomboulis. This transformation identifies a “center of mass” coordinate X(t)
which is found to satisify a Newtonian equation of motion (to lowest order)

M0Ẍ = F (Ẋ, t) ,

adding to the existing evidence [30, 31, 32, 37, 42, 44] which indicates that the
kink does indeed behave like an extended Newtonian particle (for low velocities).
The extended nature of this particle becomes apparent when the exact form of the
force on the kink is examined. Before deriving this force, we quickly review some
of the important facts about the small oscillations about nonlinear Klein-Gordon
kinks.

3.1 Small Oscillations

In this section we briefly review the main features of solutions to the nonlinear
Klein-Gordon class of field theories and the canonical transformation which forms
the basis for our perturbation theory. The single-kink solutions to the wave equa-
tions along with small oscillations about these kinks will be described. The various
quantities described in this section are collected in Table I for the sine-Gordon,
φ4, and double-quadratic potentials (this table corrects some errors in Table 3.1 of
Ref. [75] and a similar error in Eq. 4.16b in Ref. [76]).

The general nonlinear Klein-Gordon Lagrangian we consider has the form

L =

∞∫
−∞

dx
{1

2
Φ2
t −

1

2
Φ2
x − U(Φ)

}
, (3.1.1)

1
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Table 3.1: Various quantities for the φ4, SG and DQ systems
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where x and t are dimensionless space and time variables and U(φ) is the nonlin-
ear potential with at least two degenerate minima. The nonlinear wave equation
satisified by Φ(x, t) is

Φtt − Φxx + U ′(Φ) = 0 , (3.1.2)

where the prime on U(Φ) denotes a derivative with respect to Φ. Static single-
kink solutions, φc(x), of Eq. (3.1.2) may be obtained by direct integration with
the boundary conditions

dφc(x)

dx

∣∣∣
x=±∞

= 0 , (3.1.3)

The static kink (+) and antikink (-) solutions are given by

x = ± 1√
2

φc(x)∫
φc(0)

dφ√
U(φ)

, (3.1.4)

Moving solutions can be obtained by a Lorentz boost.
The equation governing the small oscillations about the static kink wave-

form is obtained by substituting

Φ(x, t) = φc(x) + ψ(x, t) , (3.1.5)

into Eq. (3.1.2) and linearizing in ψ:

ψtt − ψxx + ψU ′′[φc(x)] = 0 . (3.1.6)

Here U ′′[φc(x)]denotes the second derivative of U(φ) with respect to φ evaluated
for φ = φc(x). Writing ψ as

ψ(x, t) = f(x)eiωt , (3.1.7)

leads to the following eigenvalue equation:

−fxx + U ′′[φc(x)]f = ω2f . (3.1.8)

Due to the localized nature of the kink waveform φc(x), the function U ′′[φc(x)]
varies mainly in the region of the kink center (assumed to be at x = 0) and
approaches a constant (taken to be unity) far from the kink center:

U ′′[φc(x)] −−−→
|x|→∞

1 . (3.1.9)

Moreover, the function U ′′[φc(x)] has a minimum at x=0 such that

U ′′[φc(0)] < 0 . (3.1.10)
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From these properties, we see that there exists a close analogy between Eq. (3.1.8)
and the Schrödinger equation for a “particle” moving in a one-dimensional “po-
tential well”, U ′′[φc(x)]. The “bound state(s)” and “continuum” states for this
potential are of fundamental importance for statistical mechanics phenomenologies
[76], perturbation theories for kink dynamics [76, 37], and quantization procedures
for kink states [77, 45, 47, 78, 79, 80, 81].

Since the Lagrangian (3.1.1) possesses translational invariance, the spec-
trum of the small oscillations about the single kink must contain a zero-frequency
(ω = 0) “translation” mode (Goldstone mode) which restores the translational
invariance broken by the introduction of the kink. In addition to this translation
mode there may be other discrete eigenvalues (“bound states”) with frequencies
between 0 and 1. These solutions, denoted by fb,i(x), correspond to “internal” os-
cillation modes in which the kink undergoes a harmonically varying shape change
localized about the kink center. We denote these bound-state eigenfrequencies by
ωb,1 . . . ωb,N where N is the total number of bound states. The lowest of these is
ωb,1 = 0 since all other ω2

b,i must be non-negative in order for the kink to be stable
against small oscillations.

In addition to the bound states, there exist continuum states (continuous
spectra) which are labelled by a wavevector k. These states have eigenvalues ω2

k

given by
ω2
k = 1 + k2 . (3.1.11)

which is precisely the dispersion relation for small oscillations in the absence of
kinks.

The continuum states together with the bound-states form a complete set
and satisfy the completeness relation,

N∑
i=1

f ∗b,i(x)fb,i(x
′) +

∞∫
−∞

dkf∗k (x)fk(x
′) = δ(x− x′) . (3.1.12)

and the following orthogonality relations:

∞∫
−∞

dxfb,n(x)fb,m(x) = δm,n ,

∞∫
−∞

dxf ∗k (x)fk′(x) = δ(k − k′) ,

∞∫
−∞

dxfk(x)fb,n(x) = 0 . (3.1.13)

In the case in which φ′c(x) is symmetric, U ′′[φc(x)] is also symmetric and therefore



5

the continuum states may be chosen to have definite parity (if desired):

fk(−x) = ±f−k(x) = ±f ∗k (x) . (3.1.14)

In addition, the following identity has been recently found [82]

N∑
i=2

1

ω2
b,i

f ∗b,i(x)

∞∫
−∞

dyfb,i(y)φ
′′
c (y) +

∞∫
−∞

dk
1

ω2
k

f ∗k (x)

∞∫
−∞

dyfk(y)φ
′′
c (y) =

1

2
xφ′c(x) ,

(3.1.15)
which can be readily proved by applying −∂2/∂x2 +U ′′[φc(x)] to both sides of Eq.
(3.1.15).

Having illustrated the complete set of states associated with the linear op-
erator given in Eq. (3.1.6), one might conclude that all of the relevant solutions of
Eq. (3.1.6) have been found. This is not the case as has been pointed out in some
recent work of Magyari and Thomas [83]. In searching for solutions of Eq. (3.1.6)
we assumed a harmonic time dependence. However in general we should make the
separation of variables ansatz

ψ = Q(t)f(x) . (3.1.16)

Substituting this separation ansatz into Eq. (3.1.6) we obtain the following equa-
tion for Q(t):

Q′′(t) + λQ(t) = 0 , (3.1.17)

where λ is the separation constant. For λ 6= 0 we do indeed find a harmonic time
dependence for Q(t), however for λ = 0 there exists another solution which is linear
in time

Q(t) = at+ b . (3.1.18)

Therefore we find that we have a degeneracy of the zero frequency eigenvalue. Just
as the original zero frequency can be interpreted as having the effect of translating
the kink in space, the second solution, termed the “defective degeneracy” [83], has
the effect of inducing an infinitesimal velocity change in the kink. To see this we
simply add the second solution to a stationary kink

φc(x+ εt) ≈ φc(x) + εtφ′c(x) . (3.1.19)

The physical significance of this defective degeneracy can be further illus-
trated by considering the effects of an additional damping term ηΦt to Eq. (3.1.2).
Using the same separation ansatz we obtain the following equation for Q(t)

Q′′(t) + ηQ′(t) + λQ(t) = 0 . (3.1.20)

Again one can assume a harmonic time dependence

Q(t) = e−iω1,2t , (3.1.21)
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with ω1,2 given by

ω1,2 = ±
√
λ− 1

4
η2 − 1

2
iη . (3.1.22)

Now the eigenvalue λ = 0 is no longer degenerate since in this case we obtain
ω = 0 (Goldstone mode) and ω = −iη. Therefore with the addition of damping,
the defective degeneracy of the λ = 0 eigenvalue is lifted by the occurence of the
“relaxation mode”

Q(t) = e−ηt , (3.1.23)

which describes the deceleration of an infinitesimally slowly moving kink to a
shifted (φ′c(x) still shifts the kink) static kink. This “degree of freedom” is actually
accounted for by the kink velocity coordinate Ẋ(t) which is introduced in the next
section.

3.2 The Collective Coordinate and the Canoni-

cal Transformation

As mentioned in Chapter 2, a transformation to a set of variables in which one can
easily identify a kink coordinate would be of great utility when one describes the
motion of a kink. Such a transformation has been found [45, 47] for unperturbed
nonlinear Klein-Gordon field theories. This transformation decomposes the full
field Φ(x, t) into a classical kink solution φc(x) whose center translates according
to the dynamical variable X(t) plus a “radiation” field χ(x, t)

Φ(x, t) = φc(x−X(t)) + χ(x−X(t), t) (3.2.1)

The momentum conjugate to the field φ(x, t) is also decomposed into a soliton
component plus a radiation field

Π0(x, t) = π(x−X(t), t)− p+
∫
πχ′

M0(1 + ξ/M0)
φ′c(x−X(t)) , (3.2.2)

where M0 ≡
∫
φ′cφ

′
c and ξ ≡

∫
χ′φ′c. The prime denotes differentiation with respect

to the argument and unless otherwise specified, all integrals denote one-dimensional
integrals over x.

Having made the transformation

{Φ(x, t),Π0(x, t)} → {X(t), p(t), χ(x, t), π(x, t)} , (3.2.3)

one notices that the number of degrees of freedom are not conserved, that is, on
the left-hand side of Eq. (3.2.3) we have two full field degrees of freedom whereas
on the right-hand side we have two full field degrees of freedom plus two discrete



7

degrees of freedom. To remedy this situation, we must impose the following two
constraints

∞∫
−∞

dx χ(x, t)φ′c(x) = 0 ,

∞∫
−∞

dx π(x, t)φ′c(x) = 0 . (3.2.4)

The first of these constraints has the interpretation that the ψ field cannot have a
term proportional to the translation mode, that is, the effect of the ψ field cannot
cause the kink to translate. This is a very reasonable constraint since we have a
dynamical variable whose only purpose is to translate the kink. The second of the
constraints has a similar interpretation.

This transformation is not typical due to the presence of the constraints. To
show that it is a canonical transformation, one must resort to the Dirac formalism
for constrained systems [84]. Usually when one deals with constrained systems,
the constraints cannot be used until all of the Poisson brackets have been taken,
that is, the equalities in Eqs. (3.2.4) are “weak equalities”. The Dirac formalism
makes these equalities strong by modification of the brackets (Dirac brackets). For
this particular transformation the brackets are{

χ(x, t), π(y, t)
}

= δ(x− y)− 1

M0

φ′c(x)φ
′
c(y) , (3.2.5){

X, p
}

= 1 , (3.2.6)

with all remaining brackets vanishing. Using these brackets one can verify that
the brackets in terms of the original variables satisfy the standard relations, that
is {

Φ(x, t),Φ(y, t)
}

=
{
Π0(x, t),Π0(y, t)

}
= 0 . (3.2.7){

Φ(x, t),Π0(y, t)
}

= δ(x− y) , (3.2.8)

In what follows, every time a bracket appears it is meant to indicate a Dirac
bracket.

We can gain further insight into the transformation by examining the form
which some of the energy-momentum tensor elements take in terms of the new
variables. First we consider the Hamiltonian

H =
∫
T00

=
∫ {

1

2
Π2

0 +
1

2
Φ′2 + U(Φ)

}
,

= M0 +
1

2M0

(p+
∫
πχ′)2

(1 + ξ/M0)2
+

∫
Hf , (3.2.9)
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where

Hf =
1

2
π2(x, t) +

1

2
χ′2(x, t) + V (χ, φc) , (3.2.10)

V (χ, φc) = U(φc + χ)− χ(x, t)U ′(φc)− U(φc) , (3.2.11)

where primes denote differentiation with respect to the argument and repeated use
of

φ′′c = U ′(φc) , (3.2.12)

and
1

2
(φ′c)

2 = U(φc) , (3.2.13)

has been made. Given the Hamiltonian in terms of the new variables, one can
derive the equations of motion for the dynamical variables. In particular we find
that the equation for X is given by

Ẋ =
p+

∫
πχ′

M0(1 + ξ/M0)2
(3.2.14)

Using this equation of motion for X we can rewrite the Hamiltonian as

H = M0 +
1

2
M0(1 + ξ/M0)

2Ẋ2 +
∫
Hf . (3.2.15)

In this form we see that H almost decouples into a kink contribution and a phonon
contribution. The term which prevents this decoupling can be understood to be
a renormalization of the mass M0. This coupling represents the interaction of the
phonons back on the kink and is one the most interesting aspects of this method.

Next we turn our attention to the total momentum of the system

P ≡
∫
T01 = −

∫
T 01 , (3.2.16)

=
∫

Π0(x, t)Φ
′(x, t) , (3.2.17)

=
∫
π(x−X, t)

[
φ′c(x−X) + χ′(x−X, t)

]
− p+

∫
πχ′

M0(1 + ξ/M0)

∫ [
φ′c(x−X)χ′(x−X, t) + φ′c(x−X)φ′c(x−X)

]
(3.2.18)

=
∫
πχ′ − p+

∫
πχ′

M0(1 + ξ/M0)
(M0 + ξ) (3.2.19)

= p . (3.2.20)

From this we see that the variable p actually represents the total momentum of
the system and not the kink momentum, even though it is conjugate to X(t). It
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might appear that this would be rather inconvenient when one wishes to interpret
the solutions to the equations of motion. This is not the case since in the following
section we derive a second order equation forX. However it does present difficulties
when we want to fix kink degrees of freedom in the Fokker-Planck method to be
developed in Chapter 6. This problem can be avoided by using a transformation
in which the momentum conjugate to the center of mass variable X is the kink
momentum. The transformation for which p is the kink momentum is given by

Φ(x, t) = φc(x−X(t)) + χ(x, t) (3.2.21)

Π0(x, t) = π(x, t)− p+
∫
πχ′

M0(1 + ξ/M0)
φ′c(x−X(t)) , (3.2.22)

with the constraints

∞∫
−∞

dx χ(x, t)φ′c(x−X) = 0 ,

∞∫
−∞

dx π(x, t)φ′c(x−X) = 0 . (3.2.23)

To complete the transformation the Dirac brackets must be presented. The bracket
of χ with π is the same as before but the brackets of the phonon variables χ and
π with the momentum p become

{
χ(x, t), p

}
= 1− ξ

M0

φ′c(x−X) , (3.2.24)

= 1− Pφcχ
′(x−X) (3.2.25){

π(x, t), p
}

= 1− φ′c(x−X)

M0

∞∫
−∞

dx φ′c(x−X)π′(x, t) , (3.2.26)

= 1− Pφcπ
′(x−X) , (3.2.27)

with all other brackets zero. In the last step we have introduced the “translation-
mode” projection operator Pφc defined by

PφcG(x, t) =
φ′c(x)

M0

∫
φ′c(x)G(x, t) . (3.2.28)

This operator projects out that piece of any function which “overlaps” with the
translation mode φ′c(x).

In the actual calculation of the equations of motion one does not gain any
advantage with either of the two brackets. The second transformation has the
advantage that p is the kink momentum while the first, which is the one which
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will be implemented in the following chapters, has the virtue that the phonon
field translates with the kink center of mass. This is especially useful when the
interaction of the kink with the perturbation results in a permanent distortion of
the kink waveform.

Finally we note that with the additional definition of a Lorentz boost gen-
erator

L =
∫
xT00 , (3.2.29)

Tomboulis has shown [45] that the three operators H, P , and L form a Poincaré
algebra,

{H,P} = 0

{L, P} = H

{L,H} = P , (3.2.30)

and therefore the unperturbed transformation preserves the Lorentz invariance
evident in the Lagrangian.

3.3 The Perturbed System

The types of perturbations which we study have interaction Hamiltonians which
may be written in the form

Hint = −
∞∫

−∞

dx v(x, t) F [Φ(x, t),Φx(x, t)] , (3.3.1)

where v(x, t), assumed small in magnitude, denotes the space and time dependence
of the perturbation and F [Φ(x, t),Φx(x, t)] tells us how the perturbation couples
to the field. The case in which the coupling function F is linear in the field and
v(x, t) = δ(x − x0) could be physically realized in terms of the pendulum chain
if one of the pendula experienced a uniform external torque. Similarly for the
pendulum chain, if F = Φ2

x and v(x, t) = θ(x − x0), the perturbation may be
thought of as arising from an abrupt change in the spring constant of the chain.
The general form of the perturbation (3.3.1) should allow many other types of
perturbations to be examined, some of which will be presented in Chapter 5.

The aim of the perturbation theory is of course to study its influence on
the kink. It should be kept in mind that even without the presence of a kink
the perturbation influences the system. For example, if the perturbation is a
torque on one of the pendula as mentioned above, the field in the vicinity of the
applied torque will be modified as shown in Figure 3.1 This deformation will be
present with or without the kink. If the kink scatters off of this perturbation,
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Figure 3.1: Response of the sine-Gordon pendulum chain to a constant torque on

a single pendulum

long before and after the scattering event the field in the region of the torque will
be as shown in Figure 3.2 (neglecting any emitted phonons). The transformation
described in the previous section could account for this feature through the χ
field, however this is unattractive since then χ(x,±∞) would be nonzero making
the boundary conditions more difficult to deal with. Indeed, if this background
response is not included from the outset, the field evolves in such a way as to
“build up” this response and, in the process, the kink dynamics can appear [85] to
be non-Newtonian. It is clear that one would like to take care of this deformation
from the start and, in doing so, Newtonian dynamics is recovered. We accomplish
this by introducing the “background” field ψ0(x, t) and modifying the canonical
transformation to include it as follows

Φ(x, t) = φc[x−X(t)] + ψ[x−X(t), t] + ψ0(x, t) , (3.3.2)

Π0(x, t) = π[x−X(t)]− p+
∫
πψ′

M0(1 + ξ/M0)
φ′c[x−X(t)]− ψ̇0(x, t) , (3.3.3)

where M0 and ξ are still defined by

M0 =
∫
φ′cφ

′
c , (3.3.4)

ξ =
∫
ψ′φ′c , (3.3.5)
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and the constraints are given by∫
dx φ′c(x)ψ(x, t) = 0 (3.3.6)∫
dx φ′c(x)π(x, t) = 0 . (3.3.7)

The ψ0 term in Eq. (3.3.2) represents the response of the field to the perturbation
in the absence of a kink and obeys the following equation:

[∂tt − ∂xx]ψ0(x, t) + ψ0U
′(ψ0)− F10[ψ0, ψ

′
0]v(x, t) +

d

dx
(v(x, t)F01[ψ0, ψ

′
0]) = 0 ,

(3.3.8)
with Fij defined by

Fij ≡
∂i+jF [Φ,Φx]

∂Φi∂Φj
x

. (3.3.9)

The field decomposition given in Eq. (3.3.2) is perhaps best illustrated with
an example. Consider the “torqued pendulum” perturbation mentioned above with
the kink scattering from X = −∞ to X = ∞. In Figure 3.2 we show the field for
times long before and after the scattering takes place. For t = −∞ the kink has
not yet interacted with the perturbation and therefore the field consists of the kink
plus the background deformation. For large positive times the kink has scattered
off of the perturbation and in the process emitted some phonons. These phonons
are described by the ψ field while the ψ0 field still accounts for the deformation in
the region of the applied torque.

It has been shown [45] that Eqs. (3.3.2) and (3.3.3) specify a canonical
transformation when no perturbation is present, that is for ψ0 = 0 and v(x, t) = 0.
That Eqs. (3.3.2) and (3.3.3) along with the constraints in Eqs. (3.3.6) and (3.3.7)
still form a canonical transformation in the presence of a perturbation can be
proved as follows. For no perturbation, Eqs. (3.3.2) and (3.3.3) are a point trans-
formation of equations (3.2.1) and (3.2.2) and therefore the transformation is still
canonical. The addition of a perturbing piece to the Hamiltonian has no effect
since the canonical nature of the transformation depends only on the transforma-
tion equations and not on the Hamiltonian [86].

With the canonical transformation in hand, we may proceed to derive the
equations of motion for the dynamical variables by using the Dirac-bracket formal-
ism for constrained systems [84]. As in the previous section, the nonzero brackets
for our system are

{ψ(x, t), π(y, t)} = δ(x− y)− φ′c(x)φ
′
c(y)

M0

, (3.3.10)

{X(t), p(t)} = 1 (3.3.11)
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Figure 3.2: The various contributions to the field for the “torqued pendulum”

perturbation. The solid line represents the kink contribution, the dashed line the

background field ψ0 and the dotted line the phonon portion ψ.
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The bracket in Eq. (3.3.10) may be interpreted as a projection operator when
it occurs under an integral sign which is always the case when the equations of
motion are derived. For example, consider the following operation involving an
arbitrary functional G[π(y, t)] of the momentum field:∫

dx{ψ(x, t), G(π(y, t))}

=
∫
dxG′(π(y, t)){ψ(x, t), π(y, t)} (3.3.12)

= G′(π(x, t))− φ′c(x)

M0

∫
φ′c(x)G

′(π(x, t)) (3.3.13)

= (1− Pφc)G
′(π(x, t)) . (3.3.14)

Given the brackets in Eqs. (3.3.10) and (3.3.11) , we may derive the equa-
tions of motions by taking the Dirac bracket of the dynamical variables with the
Hamiltonian. Using the fact that the Hamiltonian in terms of the original variables
is given by

H =
1

2

∞∫
−∞

dx
[
Π2

0(x, t) + Φ′2(x, t) + U [Φ]
]
+Hint , (3.3.15)

we write the Hamiltonian in terms of the new variables as

H = H0 +Hψ0 +Hint , (3.3.16)

where

H0 = M0 +
1

2M0

(p+
∫
πψ′)2

(1 + ξ/M0)2
+

∫
Hf , (3.3.17)

Hf (x, t) =
1

2
π2(x, t) +

1

2
ψ′2(x, t) + V (ψ, φc) , (3.3.18)

and
V (ψ, φc) = U(φc + ψ)− ψ(x, t)U ′(φc)− U(φc) . (3.3.19)

Hint is given in Eq. (3.3.1) and Hψ0 is defined by

Hψ0 = −π[x−X(t), t]ψ̇′0(x, t) +
p+

∫
πψ′

M0(1 + ξ/M0)
φ′c[x−X(t)]ψ̇0(x, t)

+ ψ′[x−X(t), t]ψ′0(x, t) + φ′c[x−X(t)]ψ′0(x, t) + ∆U , (3.3.20)

with

∆U = U [φ(x) + ψ(x, t) + ψ0(x+X(t), t)]− U [φ(x) + ψ(x, t)] . (3.3.21)

The calculation of the equations of motion for X, p, ψ, π is straightforward but
tedious and is therefore relegated to Appendix A.
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Since we are most interested in the kink center of mass motion, it is useful
to derive a second order equation for the kink center of mass variable X(t). Using
Eq. (A.23) from Appendix A we have

M0Ẍ =
1

(1 + ξ/M0)

{
−

∫
v(x, t)

[
φ′c(x−X)F10[Φ,Φx] + φ′′c (x−X)F01[Φ,Φx]

]
+

∫ [
ψ̈0(x, t)− ψ′′0(x, t)

]
φ′c(x−X) +

∫
φ′c(x−X)U ′[Φ(x, t)]

+ (1 + Ẋ2)
∫
ψ′φ′′c − 2Ẋ

∫
π′φ′c + 2Ẋ

∫
φ′c(x)ψ̇

′
0(x+X, t)

}
. (3.3.22)

where Φ is understood to mean Φ(x, t). Since we have not yet made any approxi-
mations, Eq. (3.3.22) is exact and states that the kink center of mass variable X(t)
obeys Newton’s law. The “force” that the kink experiences, that is the right-hand
side of Eq. (3.3.22), has several interesting properties. First, it includes terms
which depend on the radiation field ψ(x, t) and therefore the equations that must
be solved are really a set of integro-differential equations which are most easily
solved perturbatively. Physically, the presence of ψ in the kink equations means
that any phonons produced by the propagation of the kink in the perturbed system
in turn affect the kink’s motion. The second interesting feature of the “force” on
the kink is that one of the terms is proportional to the square of the kink velocity,
that is, there is a “dissipative” term in the center of mass equation of motion.
Because we started with a Hamiltonian system, this “dissipative” term cannot
represent a real loss of energy. Rather, this term represents a transfer of energy
between the kink center of mass motion and the radiation field.

One is tempted to interpret the term which is linear in Ẋ as also representing
a transfer of energy. However, further examination of Eq. (3.3.22) indicates that
this term is actually part of the inertia of the kink. To see this we make use of Eq.
(A.13) of Appendix A to replace the π′(x, t) term in Eq. (3.3.22) by an equivalent
expression in terms of the ψ and ψ0 fields:∫

π′φ′c =
∫
ψ̇′φ′c − Ẋ

∫
ψ′′φ′c +

∫
ψ̇′0(x+X, t)φ′c(x) . (3.3.23)

Substitution of this expression in to Eq. (3.3.22) yields

M0Ẍ =
1

(1 + ξ/M0)

{
−

∫
v(x, t)

[
φ′c(x−X)F10[Φ,Φx] + φ′′c (x−X)F01[Φ,Φx]

]
+

∫ [
ψ̈0(x, t)− ψ′′0(x, t)

]
φ′c(x−X) +

∫
φ′c(x−X)U ′[Φ(x, t)]

+ (1− Ẋ2)
∫
ψ′φ′′c − 2Ẋ

∫
ψ̇′φ′c

}
. (3.3.24)
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Next we move the term linear in Ẋ to the left-hand side of the equation and
multiply by 1 + ξ/M0 which allows us to write

d

dt

[
M0(1 + ξ/M0)

2Ẋ
]

= (1 + ξ/M0)

{
−

∫
v(x, t)

[
φ′c(x−X)F10[Φ,Φx] + φ′′c (x−X)F01[Φ,Φx]

]
+

∫ [
ψ̈0(x, t)− ψ′′0(x, t)

]
φ′c(x−X) +

∫
φ′c(x−X)U ′[Φ(x, t)]

+ (1− Ẋ2)
∫
ψ′φ′′c

}
, (3.3.25)

where we have made use of the fact that

ξ̇ =
∫
ψ̇′φ′c . (3.3.26)

Equation (3.3.25) is nothing more that Newton’s law for a particle with time-
dependent mass

M = M0(1 + ξ/M0)
2 . (3.3.27)

Therefore we see that one of the effects of the phonon field is to renormalize the
mass of the kink. This feature of the phonon field has already been noted in the
quantized theories for the unperturbed system [47]. The interpretation of the left-
hand side of Eq. (3.3.25) as being the time derivative of the kink momentum is
verified by examining the equation for Ẋ derived in Appendix A. Rewriting Eq.
(A.11) we have

M0(1 + ξ/M0)
2Ẋ = p+

∫
πψ′ + (1 + ξ/M0)A(X, t) , (3.3.28)

which states that the kink momentum equals the total momentum of the system p
minus the momentum of the phonon field (−

∫
πψ′) minus a momentum term due

to the background.
Equation (3.3.22) was derived by using the fact that Eqs. (3.3.2) and

(3.3.3) plus the constraints form a canonical transformation and therefore the
Dirac bracket of the dynamical variables with the Hamiltonian yields the equa-
tions of motion. An alternate method is available which uses the fact that in
Eqs. (3.3.2) and (3.3.3) we have a transformation in which the old coordinates
are expressible in terms of the new coordinates and therefore, one can derive the
equations of motion simply by taking the appropriate derivatives of Eqs. (3.3.2)
and subsituting them into Eq. (3.1.2). In fact, we can generalize Eq. (3.1.2) by
including a phenomenological damping term of the form

εΦ̇(x, t) .
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Unlike the “damping” terms in Eq. (3.3.22), this term is truly dissipative and may
be envisioned as arising from coupling the system to a heat bath.

Although substitution of Eq. (3.3.2) into Eq. (3.1.2) (see Appendix B)
yields the correct equations of motion more quickly and with less work than using
the canonical formalism, this in no way means that we can abandon the canoni-
cal transformation. A major reason for this is that the canonical structure allows
us to use the standard prescription of promoting canonical variables to operators
and the Poisson bracket to commutators when we wish to quantize the system
[45, 47]. In addition, when one works with phase space integrals as is the case in
Fokker-Planck (see Chapter 6) or Boltzmann approaches, having a canonical trans-
formation preserves the phase space volume element (for our transformation which
involves constraints, the Jacobian is actually the product of the delta functions
whose arguments are exactly the constraints in Eqs. (3.2.4) [47]).

3.4 The Perturbation Expansion

We now turn our attention to the task of obtaining an approximate solution of
Eq. (3.3.24) as a perturbation series. We assume that the perturbation v(x, t) is
proportional to some small parameter which we denote by λ. Since we are mainly
interested in the motion of the kink center of mass, we begin by expanding Eq.
(3.3.2). For these purposes, we assume that v(x, t), ψ(x, t) and ψ0(x, t) are all of
order λ. To obtain the expansion of Eq. (3.3.24) through order λ2, we make use
of the following Taylor series

F10[Φ(x+X, t),Φx(x+X, t)] =
∂F (φc, φ

′
c)

∂φc
+ χ(x, t)

∂2F (φc, φ
′
c)

∂2φ2
c

+ χ′(x, t)
∂2F (φc, φ

′
c)

∂φ′c∂φc
,(3.4.1)

F01[Φ(x+X, t),Φx(x+X, t)] =
∂F (φc, φ

′
c)

∂φ′c
+ χ′(x, t)

∂2F (φc, φ
′
c)

∂2φ′2c

+ χ(x, t)
∂2F (φc, φ

′
c)

∂φ′c∂φc
,(3.4.2)

where for notational convenience we have introduced

χ(x, t) = ψ(x, t) + ψ0(x+X, t) . (3.4.3)

Substituting Eqs. (3.4.1) and (3.4.2) into Eq. (3.3.24) we have, after collecting
terms

M0Ẍ =
1

(1 + ξ/M0)

{
−

∫
v(x+X, t)

[ d
dx
F (φc, φ

′
c)
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+ χ(x, t)
d

dx

∂F (φc, φ
′
c)

∂φc
+ χ′(x, t)

d

dx

∂F (φc, φ
′
c)

∂φ′c

]
+

∫
(ψ̈0(x, t)− ψ′′0(x, t))φ

′
c(x−X)) +

∫
φ′c(x−X)U ′[Φ(x, t)]

+ (1− Ẋ2)
∫
ψ′φ′′c − 2Ẋ

∫
ψ̇′φ′c

}
. (3.4.4)

Next we write the following Taylor series for U ′[Φ(x+X, t)]

U ′[Φ(x+X, t)] = U ′[φc(x, t)]+
1

2
χ(x, t)U ′′[φc(x, t)]+χ2(x, t)U ′′′[φc(x, t)] , (3.4.5)

where we have used our freedom to choose a normalization such that the following
are true

U ′[φ0] = 0 , U ′′[φ0] = 1 , (3.4.6)

where the potential U has its minimum at φ0. Combining all these terms we have

M0Ẍ = −
(
1− ξ

M0

)[
∂V (X, t)

∂X
+ 2Ẋ

∫
ψ̇′φ′c + Ẋ2

∫
ψφ′′c

]

−
∫
v(x+X, t)

[
χ(x, t)

d

dx

∂F (φc, φ
′
c)

∂φc
+ χ′(x, t)

d

dx

∂F (φc, φ
′
c)

∂φ′c

]
+

1

2

∫
χ2(x, t)U ′′′[φc(x)]φ

′
c(x) , (3.4.7)

where the effective potential V (x, t) is defined by

V (X, t) = −
∫ [
v(x+X, t)F (φc, φ

′
c)− ψ̈0(x, t)φ

′
c(x−X)

]
. (3.4.8)

Equation (3.4.7) is valid through second order in λ. Keeping only the first order
terms in λ we have

M0Ẍ = −∂V (X, t)

∂X
− 2Ẋ

∫
ψ̇′φ′c − Ẋ2

∫
ψφ′′c . (3.4.9)

Although in principle one must know the phonon field ψ to lowest order in λ
before Eq. (3.4.9) can be solved, in practice the terms which involve the phonon
field are often small relative to the gradiant of the potential. In order to estimate
the magnitude of the phonon field, one must solve the first-order PDE for ψ which
is derived below. This in turn requires knowledge of the first-order kink motion.
Therefore in principle one must solve a set of coupled equations self-consistently.
To make progress without solving the coupled equations, one assumes that the ψ
field is small. This allows one to solve for the first-order kink motion

M0Ẍ = −∂V (X, t)

∂X
. (3.4.10)
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Given X(t) to lowest order one proceeds to solve the equation for the phonon field
(see below). Now one is in a position to check if the gradient term does indeed
dominant in Eq. (3.4.9). If this is the case, one may continue to higher order.
When the gradient and “phonon” terms are of the same order of magnitude, one
must solve the coupled equations self-consistently. This will be the case when the
size of the perturbation, that is λ, is much smaller than the initial velocity of the
kink. An alternate method involves making a perturbation expansion in both the
strength of the perturbation and the initial kink velocity.

A second-order PDE for ψ, valid to first order in the perturbation expansion
is derived in Appendix A and is given by

ψ̈(x, t)− ψ′′(x, t) + ψ(x, t)U ′′(φc) = (1− Pφc)

{[
1− U ′′(φc)

]
ψ0(x+X, t)

+ v(x+X, t)
[
F10[φc, φ

′
c]− F10[0, 0]

]
− d

dx

[
v(x+X, t)

(
F01[φc, φ

′
c]− F01[0, 0]

)]}
. (3.4.11)

Since the left-hand side of Eq. (3.4.11) is exactly the small oscillations operator of
Eq. (3.1.6), we can write the a solution for ψ(x, t) is terms of a Green function

ψ(x, t) =

∞∫
−∞

dx′
∞∫

−∞

dt′G(x, x′, t− t′)I(x′, t′) , (3.4.12)

where

G(x, x′, τ) =
N∑
i=1

f ∗b,i(x)fb,i(x
′)

∞∫
−∞

dωeiωτ

2π(ω2
b,i − ω2)

+

∞∫
−∞

f ∗k (x)fk(x
′)

∞∫
−∞

dωeiωτ

2π(ω2
k − ω2)

, (3.4.13)

with τ = t − t′ and I(x, t) is the right-hand side of Eq. (3.4.11). The Green
function in Eq. (3.4.13) contains all of the bound states including the translation
mode. At first this seems to contradict the constraint condition in Eq. (3.3.6)
because including the translation mode fb,1(x) in the Green function means that
ψ(x, t) could have a portion proportional to the translation mode, namely

ψ(x, t) = −f ∗b,1(x)
∞∫

−∞

dx′
∞∫

−∞

dt′fb,1(x
′)I(x′, t′)

∞∫
−∞

dωeiωτ

2π(ω2
k − ω2)

. (3.4.14)

However this is not the case because the expression I(x′, t′) is manifestly orthogonal
to the translation mode and therefore we will find no coefficient of the translation
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mode. Analytic expressions for the Green function defined in Eq. (3.4.13) in
terms of modified Lommel functions of two variables are derived in Chapter 4 for
the sine-Gordon, Phi-4 and Double Quadratic potentials [87].

Although one can in principle calculate the ψ field using the Green function,
one finds in many cases that it is more cost effective to solve the partial differential
equation (3.4.11) directly. One might question the utility of the present perturba-
tion theory if one must, in the end, numerically solve a PDE for ψ when numerical
integration of Eq. (3.1.2) solves the entire problem. From a purely computational
point of view we could argue that Eq. (3.1.2), unlike Eq. (3.4.11), is a strongly
nonlinear PDE and therefore, although there are subroutine packages available
which can handle these equations [88], they are often quite costly. Furthermore,
although Eq. (3.4.1) may be cumbersome to use in practice, it can be used to de-
duce general features of the ψ field. For example, consider the situation in which
a kink is incident upon a time-independent localized perturbation and scatters to
X = ±∞ (see §5.3). In this case, ψ0 is time independent and the only time de-
pendence which enters the terms ψ0(x+X, t) and v(x+X, t) occurring in I(x, t)
is through X(t). If the kink scatters to X = ±∞, for large times X(t) will vary as
V0t to first order. Since v(x) is localized, both v and ψ0 will be localized in their
first argument. Therefore for large values of t, ψ0(x

′+X(t′)) and v(x′+X(t′)) will
contribute to the integral in Eq. (3.4.1) only for small values of t′. Using the fact
that the asymptotic time dependence for the Green function is (see §4.2)

G(x, x′, t− t′) ≈ 1√
t− t′

, (3.4.15)

one can write

ψ(x, t) ≈
∞∫

−∞

dx′
∞∫
t

dt′
I(x′, t′)√
t− t′

, (3.4.16)

≈ 1√
t

∞∫
−∞

dx′
∞∫
t

dt′
I(x′, t′)√
1− t′/t

. (3.4.17)

Therefore for fixed x, the ψ field tends to zero for large times, that is to say, there
are no long-lived extended phonons generated to this order in the perturbation
theory. Similar results have been obtained by Wada and Schriefer [67] and Ogata
and Wada [68] when they consider the scattering of a phonon packet (analogous to
our ψ0 field) with a kink. They find that the kink only undergoes a phase shift to
lowest order and that no new phonons are emitted. The major difference between
their work and ours is that we have a force which maintains the “phonon” packet’s
shape, however it appears that the effect of this force makes itself felt only in higher
order.
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Although this result is itself interesting, it has larger implications for the
second-order kink motion. Consider the time-dependent second-order terms on
the right hand side of Eq. (3.4.7). All of these terms involve either ψ(x, t), which
goes to zero as t→∞, or ψ0(x+X(t), t). For the scattering situation considered
here, X(t) → ∞ as t → ∞; therefore due to the assumed localized nature of the
perturbation, ψ0(x + X(t), t) also goes to zero for large times. Since we already
know that the effective potential is zero for large X, the force on the kink for
large times is zero. Therefore after the kink has interacted with the perturbation
it travels at constant velocity. If some energy has been given to the phonon field
this velocity should be less than the initial kink velocity.

The question of the final kink velocity may be attacked more generally by
obtaining an approximate first integral of Eq. (3.4.7). To this end we note that
given the background field ψ0, the phonon field ψ, and the first order solution to
the kink center of mass motion (i.e. given X(1)(t)), the right hand side of Eq.
(3.4.7), excluding the Ẋ term, can be written as a time dependent force denoted
by F (t). Also noting that the coefficient of the Ẋ term is precisely 2ξ̇, we write

(M0 + ξ(t))Ẍ + 2ξ̇Ẋ = F (t) , (3.4.18)

where we have also assumed that the Ẋ2 term is negligible. Multiplying by the
integrating factor (1 + ξ/M0) Eq. (3.4.18) may be rewritten as

d

dt

[
M0(1 + ξ/M0)

2Ẋ
]

= (1 + ξ/M0)F (t) . (3.4.19)

Integrating this equation from t = −∞ to t = ∞ we obtain

(
1+

ξ(∞)

M0

)
Ẋ(∞)−

(
1+

ξ(−∞)

M0

)
Ẋ(−∞) =

1

M0

∞∫
−∞

dt′
(
1+

ξ(t′)

M0

)
F (t′) . (3.4.20)

For the special case in which the perturbation is localized, ξ(±∞) = 0 which allows
us to reduce Eq. (3.4.20) to

Ẋ(∞)− Ẋ(−∞) =
1

M0

∞∫
−∞

dt′
(
1 +

ξ(t′)

M0

)
F (t′) . (3.4.21)

These forms allow one to deduce the final kink velocity by performing one numerical
integral (this is a very recent result and has not yet been implemented). The
expression for the final velocity given in Eq. (3.4.20) should prove to be a good
check on the numerical integation of Eq. (3.4.7).
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