
Chapter 4

Nonlinear Klein-Gordon Green
Functions

We conclude the formal derivation of the perturbation theory by calculating the
Green functions needed to compute the phonon field ψ for the sine-Gordon, φ4 and
double quadratic potentials. Recall from section 3.4 that ψ may be expressed as

ψ(x, t) =

∞∫
−∞

dx′
∞∫

−∞

dt′G(x′, x′, t− t′)I(x′, t′) ,

where I(x′, t′) is an inhomogeneous term which depends on the perturbation. Al-
though this expression for ψ is easy enough to write down, one must ask whether or
not it is useful in practice. As mentioned in section 3.4, for the perturbations con-
sidered so far we have found that performing the integrals in Eq. (3.4.12) requires
too much computation time ( I estimate that to compute ψ to 3 significant digits
for 1000 values of x and t would require roughly 1 hour of Cray 1 time). This com-
putation requires a lot of time because the Green function oscillates rapidly in t′

over the range of times t′ for which the inhomogeneous term I(x′, t′) is appreciable.
When one encounters this type of behavior one immediately considers transform-
ing to Fourier space where the Green functions would decay rapidly. This does not
help in our case because we have imposed retarded boundary conditions on the
Green functions which evidence themselves by the appearance of the step function
prefactor θ(t − t′). Next one considers the use of the Laplace transform. When
one sees the rather complex analytic form the Green functions take it appears at
first that this approach is not possible. It is indeed remarkable that we can obtain
analytic forms for the Laplace transform of the Green functions (see section 4.3);
however, one is then faced with the nontrivial task of numerically evaluating the
Bromwich integral. Although these methods have not yet proved to be useful, it is
quite possible that for special perturbations they could lead to analytic expressions
for the phonon field.
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In the following we derive the Green functions for the sine-Gordon, φ4 and
double quadratic nonlinear potentials. One might ask whether other nonlinear
potentials could be examined with similar techniques. Since the sine-Gordon and
φ4 potentials are the first two of an infinite sequence of nonlinear potentials [49] it
is conceivable that this sequence of potentials would be tractable. However, since
the phonon waveforms are known analytically [49], we can see that the amount of
work needed for each successive potential in the sequence increases linearly, so that
one would need to develop a method which applied to the general potential. In
addition, it might be desirable to apply different boundary conditions such as peri-
odic boundary conditions on the finite line. However for now we content ourselves
with the retarded conditions as applied to the potentials mentioned above.

4.1 Analytic Evaluation of the Green functions

For the set {fb,i(x), fk(x)} of solutions satisfying the “phonon” equation (3.1.8),
we define the full Green function as:

G(x, x′, τ) =
∑

bound states

f ∗b,i(x)fb,i(x
′)

∞∫
−∞

dωeiωτ

2π(ω2
i − ω2)

+

∞∫
−∞

dk f ∗k (x)fk(x
′)

∞∫
−∞

dωeiωτ

2π(ω2
k − ω2)

, (4.1.1)

where τ ≡ t−t′. Using the completeness relation (3.1.12), and the fact that the set
{fb,i(x), fk(x)} satisify equation (3.1.8), one can show that the full Green function
satisfies the usual equation:

{∂tt − ∂xx + U ′′[φk(x)]}G(x, x′, τ) = δ(x− x′)δ(τ) . (4.1.2)

Once a set of boundary conditions is chosen the ω integral in (4.1.1) may
be evaluated without choosing a particular set of {fb,i(x), fk(x)}. In this paper we
choose retarded boundary conditions obtained by moving both of the poles in the
ω integral above the real ω axis. Carrying out the ω integral yields:

G(x, x′, τ) = Gb(x, x
′, τ) +Gp(x, x

′, τ) , (4.1.3)

where Gb(x, x
′, τ) and Gp(x, x

′, τ) are the bound state and phonon contributions
given by:

Gb(x, x
′, τ) = θ(τ)

{
τf ∗b,1(x)fb,1(x

′) +
N∑

i=2

f ∗b,i(x)fb,i(x
′)

sin(ωiτ)

ωi

}
, (4.1.4)

Gp(x, x
′, τ) = θ(τ)

∞∫
−∞

dkf∗k (x)fk(x
′)

sin(ωkτ)

ωk

, (4.1.5)
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with N the number of bound states [if N=1 the second term is omitted from Eq.
(4.1.4)] and θ(τ) is the Heaviside step function,

θ(τ) =
{

0, −∞ < τ < 0
1 0 ≤ τ <∞ (4.1.6)

In order to obtain explicit forms for these contributions to the Green function,
one must insert the appropriate set of linearized solutions into Eqs. (4.1.4) and
(4.1.5). As examples, we evaluate the phonon contribution for the SG, φ4 and DQ
potentials.

4.1.1 The sine-Gordon Potential

Since the bound state contribution (4.1.4) is already expressed in terms of known
functions, we turn to the evaluation of the phonon contribution given in Eq. (4.1.5).
Inserting the functions f(x) from the SG column of Table 3.1 into Eq. (4.1.5) we
have, after collecting common terms,

GSG
p (x, x′, τ) = θ(τ){I1 + β2I2 + β3sgn(z)I3} , (4.1.7)

where

I1 =
1

π

∞∫
0

dk√
1 + k2

cos(|z|k) sin(τ
√

1 + k2) ,

I2 =
1

π

∞∫
0

dk

(1 + k2)
3
2

cos(|z|k) sin(τ
√

1 + k2) ,

I3 =
1

π

∞∫
0

dk

(1 + k2)
3
2

k sin(|z|k) sin(τ
√

1 + k2) , (4.1.8)

with the definitions

τ ≡ t− t′ , z ≡ x− x′, β2 ≡ tanh(x) tanh(x′)− 1, β3 ≡ tanh(x′)− tanh(x) .
(4.1.9)

Since I2 is uniformly convergent for all |z| and τ , we may differentiate with respect
to |z| to obtain

I3 = − dI2
d|z|

. (4.1.10)

Therefore only I1and I2 need to be evaluated. These integrals may be evaluated
by considering the integral I(µ) given by

I(µ) =
1

π

∞∫
0

dk√
µ2 + k2

cos(|z|k) sin(τ
√
µ2 + k2) , (4.1.11)

=
θ(τ − |z|)

2
J0(µ

√
τ 2 − z2) , (4.1.12)
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where the integral is found in the tables [89]. The special case I(1), is precisely the
integral I1. Since the derivative of the integrand of Eq. (4.1.11) is a continuous
function of both µ and k we may differentiate I(µ) with respect to µ to obtain

I2 = lim
µ→1

{
−dI(µ)

dµ
+

τ

2π

∞∫
−∞

dk

µ2 + k2
cos(|z|k) cos(τ

√
µ2 + k2)

}
, (4.1.13)

=
θ(τ − |z|)

2

√
τ 2 − z2J1(

√
τ 2 − z2)

+
τ

2π

∞∫
−∞

dk

1 + k2
cos(|z|k) cos(τ

√
1 + k2) . (4.1.14)

In the integral remaining in (4.1.14) we substitute k = sinh(u), which gives us

τ

2π

∞∫
−∞

dk

1 + k2
cos(|z|k) cos(τ

√
1 + k2) (4.1.15)

=
τ

2π

∞∫
−∞

du

cosh(u)
cos[|z| sinh(u)] cos[cosh τ(u)] , (4.1.16)

=
τ

4π

∞∫
−∞

du

cosh(u)

{
cos[|z| sinh(u) + τ cosh(u)]

+ cos[τ cosh(u)− |z| sinh(u)]
}
, (4.1.17)

=
τ

2π

∞∫
−∞

dueu

e2u + 1

{
cos[aeu + be−u] + cos[ae−u + beu]

}
, (4.1.18)

=
τ

2π

∞∫
0

dt

t2 + 1

{
cos[at+

b

t
] + cos[

a

t
+ bt]

}
, (4.1.19)

=
τ

π

∞∫
0

dt

t2 + 1
cos[at+

b

t
] , (4.1.20)

where in passing from (4.1.19) to (4.1.20) we have let t→ 1/t in the second cosine
term and have defined

a ≡ τ + |z|
2

, (4.1.21)

b ≡ τ − |z|
2

. (4.1.22)

For b < 0 the integral in (4.1.20) is found in the tables [90] to be

1

π

∞∫
0

dt

t2 + 1
cos
[
at− |b|

t

]
=

1

2
e(a−b). (4.1.23)
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For b > 0 the integral in Eq. (4.1.20) may be expressed in terms of “modified”
Lommel functions of two variables [91]. The “modified” functions, namely Lommel
functions in which the first argument is pure imaginary, have not been found in the
literature. Hence we introduce the notation Λn(w, s) and Ξn(w, s) for the modified
functions and give their series representations in terms of Bessel functions:

Λn(w, s) ≡ i−nUn(iw, s) =
∞∑

m=0

(w
s

)2m+n
J2m+n(s) , (4.1.24)

Ξn(w, s) ≡ i−nVn(iw, s) =
∞∑

m=0

(w
s

)−2m−n
J−2m−n(s) , (4.1.25)

With these definitions, we write for b > 0

1

π

∞∫
0

dt

t2 + 1
cos[at+

|b|
t

] =
1

2
e−(a−b) − Λ1(w, s) , (4.1.26)

where

s ≡
√
τ 2 − z2 , (4.1.27)

w ≡ τ − |z| . (4.1.28)

Combining (4.1.23) and (4.1.26) we have for I2 :

I2 =
1

2
τe−|z| + θ(τ − |z|)

{sJ1(s)

2
− τΛ1(w, s)

}
, (4.1.29)

Using Eq. (D.14) from Appendix D we differentiate (4.1.29) with respect to |z|
which results in

dI2
d|z|

= −1

2
τe−|z| +

θ(τ − |z|)
2

{
−(τ + |z|)J0(s) + 2τΛ0(w, s)

}
. (4.1.30)

In Eqs. (4.1.29) and (4.1.30), I2 and its derivative appear to have a term
which grows linearly in τ , but this is impossible in view of the integral represen-
tations of Eqs. (4.1.8). Using asymptotic expressions for the modified Lommel
functions, we shall show in section 4.2 that the large τ dependence is actually an
inverse square root.

Writing the phonon contribution as

GSG
p (x, x′, τ) =θ(τ)

{
I1 + β2I2 − β3sgn(z)

dI2
d|z|

}
, (4.1.31)

we notice that with I1, I2 and dI2
d|z| given by Eqs. (4.1.12), (4.1.29) and (4.1.30),

there is a term which does not vanish outside of the “light-cone” (i.e. a term which
does not have θ(τ − |z|) as a prefactor), namely

θ(τ)
τe−|z|

2

{
β2 + sgn(z)β3

}
. (4.1.32)
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One can show that this term may be rewritten as

−θ(τ)τf ∗b,1(x)fb,1(x
′). (4.1.33)

Hence, when the bound state contribution is added to Eq. (4.1.31) to obtain
the full Green function, we are left with an expression which vanishes identically
outside of the light-cone:

GSG(x, x′, τ) =
θ(τ − |z|)

2

{
J0(s) + β2[sJ1(s)− 2τΛ1(w, s)]

− β3sgn(z)[−(τ + |z|)J0(s) + 2τΛ0(w, s)]
}
, (4.1.34)

explicitly demonstrating the retarded boundary conditions applied.

4.1.2 The φ4 Potential

With a slight generalization, the techniques used to evaluate the SG Green function
may be applied to the φ4 potential. Proceeding along the same lines, we write the
phonon contribution as:

Gφ4

p (x, x′, τ) =
θ(τ)

4

{
γ0I0 − γ1sgn(z)

dI0
d|z|

+ γ2I2 + γ3sgn(z)
dI2
d|z|

+ I4
}
, (4.1.35)

where I2 and dI2
d|z| are given in Eqs. (4.1.29-30) and

I0 =
1

π

∞∫
0

dk
cos(|z|k) sin(τ

√
1 + k2)

(1 + k2)
3
2 (1 + 4k2)

, (4.1.36)

I4 =
1

π

∞∫
0

dk
(1 + 4k2) cos(|z|k) sin(τ

√
1 + k2)

(1 + k2)
3
2

, (4.1.37)

= 2θ(τ − |z|)J0(s)− 3I2 , (4.1.38)

γ0 ≡ 9{tanh2(y) tanh2(y′)− tanh(y) tanh(y′)} ,
γ1 ≡ 18{tanh(y) tanh2(y′)− tanh2(y) tanh(y′)} ,
γ2 ≡ 9 tanh(y) tanh(y′)− 3 tanh2(y)− 3 tanh2(y′) ,

γ3 ≡ 6 tanh(y)− 6 tanh(y′) , (4.1.39)

y ≡ x

2
, y′ ≡ x′

2
, (4.1.40)

where Eq. (4.1.12) has been used to simplify Eq. (4.1.37). The remaining integral,
I0, may be reduced by partial fractions to

I0 =
4

3π

∞∫
0

dk
cos(|z|k) sin(τ

√
1 + k2)√

1 + k2 (1 + 4k2)
− I2

3
, (4.1.41)
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=
4

3
I01 −

1

3
I2 , (4.1.42)

with I01 defined by

I01 =
1

π

∞∫
0

dk
cos(|z|k) sin(τ

√
1 + k2)√

1 + k2 (1 + 4k2)
. (4.1.43)

To evaluate I01 we again substitute k = sinh(u) which gives us

I01 =
1

π

∞∫
0

du
cos[|z| sinh(u)] sin[τ cosh(u)]

1 + 4 sinh2(u)
, (4.1.44)

=
1

2π

∞∫
0

tdt

t4 − t2 + 1
sin
[
at+

b

t

]
, (4.1.45)

where in going from Eq. (4.1.43) to (4.1.44) substitutions similar to those made in
Eqs. (4.1.15-20) have been made. Factoring the denominator of Eq. (4.1.45), we
define

β2
± =− t2± =−β∓ =

−1∓ i
√

3

2
, (4.1.46)

where t2± are the roots of t4 − t2 + 1. Using partial fractions, we may write Eq.
(4.1.44) as

I01 =
1

2πi
√

3

{ ∞∫
0

tdt

t2 + β2
+

sin
[
at+

b

t

]
−

∞∫
0

tdt

t2 + β2
−

sin
[
at+

b

t

]}
, (4.1.47)

=
−1

2i
√

3
[J(β2

−)− J∗(β2
−)] , (4.1.48)

=
−1√

3
=[J(β2

−)] , (4.1.49)

where = denotes the imaginary part and

J(β2) = − 1

π

∞∫
0

tdt

t2 + β2
sin
[
at+

b

t

]
. (4.1.50)

The integral defined in Eq. (4.1.49) is a slight generalization of Hardy’s integrals
for Lommel functions [91, 92]. The evaluation of J(β2) follows Hardy’s with a few
modifications and is presented in Appendix C for completeness. From Eq. (C.21)
in Appendix C we have

J(β2
−) =

1

2
e
−(aβ−− b

β−
) − θ(b)Λ2

[ 2b

β−
, 2
√
ab
]
, (4.1.51)
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=
1

2
e−

1
2
(|z|+i

√
3τ) − θ(τ − |z|)Λ2(β+w, s) . (4.1.52)

Therefore we have for I01 :

I01 =
1

2
√

3
e−

|z|
2 sin(ω2τ) +

θ(τ − |z|)√
3

=[Λ0(β+w, s)] , (4.1.53)

where

ω2 ≡
√

3

2
, (4.1.54)

and we have used

=[Λ2(β+w, s)] ==[Λ0(β+w, s) + J0(s)] ==[Λ0(β+w, s)] . (4.1.55)

From Eq. (4.1.35) we see that we need a derivative of I0, and hence I01, with
respect to |z|. Using Eq. (D.14) and Eqs. (D.26) from Appendix D we have

dI01

d|z|
=
−1

4
√

3
e−

|z|
2 sin(ω2τ)−

θ(τ − |z|)
2
√

3
=[Λ1(β+w, s)] , (4.1.56)

where
β2

+ + 1

β+

= 1 , (4.1.57)

has also been used. Collecting all of the pieces, we write for the phonon contribu-
tion:

Gφ4

p (x, x′, τ) =
θ(τ)

4

{4

3
γ0I01 −

4

3
γ1sgn(z)

dI01
d|z|

+ [γ2 −
γ0

3
− 3]I2

+ sgn(z)[
γ1

3
+ γ3]

dI2
d|z|

+ 2θ(τ − |z|)J0(s)
}
. (4.1.58)

As in the sine-Gordon case one may show that when we combine the “non-retarded”
pieces of the phonon contribution, we get exactly the negative of the bound state
contribution; specifically we have

1

8
[γ2 −

γ0

3
− 3]τe−

|z|
2 − sgn(z)

8
[
γ1

3
+ γ3]τe

− |z|
2 = −τf ∗b,1(x)fb,1(x

′) , (4.1.59)

1

6
√

3
e−

|z|
2 sin(ω2τ)γ0 +

1

12
√

3
e−

|z|
2 sin(ω2τ)sgn(z)γ1 = −sin(ω2τ)

ω2

f ∗b,2(x)fb,2(x
′).

(4.1.60)
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With the “non-retarded” portion cancelled by the bound state contribution, we
have for the full Green function

Gφ4

(x, x′, τ) = θ(τ − |z|)
{

1

3
√

3
=[γ0Λ0(β+w, s) +

1

2
γ1sgn(z)Λ1(β+w, s)]

+
1

8
[γ2 −

γ0

3
− 3][sJ1(s)− 2τΛ1(w, s)]

+
sgn(z)

8
[
γ1

3
+ γ3][−(τ + |z|)J0(s) + 2τΛ0(w, s)] +

1

2
J0(s)

}
. (4.1.61)

4.1.3 The Double Quadratic Potential

As a final example, we evaluate the DQ Green function. The phonon contribution
in this case is

GDQ
p (x, x′, τ) =

θ(τ − |z|)
2

{
I1 −

[
I2(z+)− dI2(z+)

dz+

]}
, (4.1.62)

where I1 is given in Eq. (4.1.12) [with µ = 1] and I2(z+) is given in Eq. (4.1.29)
with |z| replaced by z+ ≡ |x|+ |x′|. Factoring out the non-retarded piece we have

GDQ(x, x′, τ) =
θ(τ − |z|)

2

{
J0(s)− s+J1(s+) + 2τΛ1(w+, s+)

+ (τ + z+)J0(s+) + 2τΛ0(w+, s+)
}
, (4.1.63)

with

z+ ≡ |x|+ |x′| , (4.1.64)

w+ ≡ τ − z+ , (4.1.65)

s+ ≡
√
τ 2 − z2

+ . (4.1.66)

All three of the Green functions derived above have been checked against numeri-
cal integration. Over a large range of values for x, x′ and τ , we find agreement to
8 significant digits, which is presently the accuracy of our routines which compute
the modified Lommel functions. In addition we have applied the small oscillation
operator [see Eq. (4.1.2)] on each of the analytic expressions which, after some
tedious algebra, yield the appropriate delta functions. To obtain a final check, we
note that by using the orthogonality relation in Eq. (3.1.13) and linear superposi-
tion, we see that phonon contribution to the Green functions must be orthogonal
to the bound state(s). Numerical integrations confirm this property for all three
Green functions.
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4.2 Asymptotic Behavior

To obtain asymptotic expressions (τ →∞) for the Green functions, we must first
find the appropriate limits of the modified Lommel functions. In Appendix E we
examine Λ0(w, s) and Λ1(w, s) in the limit as s→∞ while w/s→ 1, which, when
w and s are related to τ and z by Eqs. (4.1.27) and (4.1.28), corresponds to τ � |z|.
This limit is interesting because the expressions for the phonon contributions to the
Green functions have a term linear in τ which, in view of the integral expressions,
must be cancelled by the other terms.

Since all of the Green functions are expressible in terms of the integrals
I01, I2 and their derivatives with respect to |z| we consider the asymptotic expres-
sions for these quantities first and then combine them to obtain the limits for the
Green functions.

To apply the results of Appendix E we must first recast these results in
terms of the variables τ and z which are related to w and s by

w = β(τ − |z|) ,
s =

√
τ 2 − z2 , (4.2.1)

where β is either unity or β+. From Eqs. (E.31) and (E.32) of Appendix E, we
have for β = 1,

Λ0(w, s) ≈ J0(s)

2
+
e−|z|

2
+
|z|
2τ

√
2

πs

{
cos(s− π

4
)
[
1 +

2R4(1, κ)

(8s)2

]
sin(s− π

4
)
2R2(1, κ)

8s

}
+O(τ−

9
2 ) , (4.2.2)

Λ1(w, s) ≈ e−|z|

2
− s

2τ

√
2

πs

{
cos(s− π

4
)
[2[R2(1, κ)− 2]

8s
− 40R4(1, κ)

(8s)3

]
−sin(s− π

4
)
[
1 +

2[R4(1, κ) + 12R2(1, κ)]

(8s)2

]}
+O(τ−

9
2 ) , (4.2.3)

where κ ≡ w/s, R2 and R4 are defined in Eqs. (E.29), (E.30), and we have used

ε(1, κ) =
|z|
s

(4.2.4)

σ1(1, κ) =
τ

2s
, (4.2.5)

σ2(1, κ) =
τ

2|z|
, (4.2.6)
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σ1(1, κ)√
1 + ε2(1, κ)

=
1

2s
, (4.2.7)

ε(1, κ)σ2(1, κ)

1 + ε2(1, κ)
=

s

2τ
. (4.2.8)

Inserting the expression for Λ1(w, s) in Eq. (4.2.3) into Eq. (4.1.29), we see that
the linear τ dependence exactly cancels (for large τ and τ � |z|, both θ(τ − |z|)
and θ(τ) are unity), leaving us with:

I2 ≈ sJ1(s)

2
+
s

2

√
2

πs

{
cos(s− π

4
)
[2[R2(1, κ)− 2]

8s
− 40R4(1, κ)

(8s)3

]
−sin(s− π

4
)
[
1 +

2[R4(1, κ) + 12R2(1, κ)]

(8s)2

]}
+O(τ−

7
2 ) . (4.2.9)

In Eq. (4.2.9), I2 now seems to have a
√
s and therefore

√
τ dependence, however

this again exactly cancels when J1(s) is expanded in its asymptotic series resulting
in:

I2 ≈ 1

2

√
2

πs

{
sin(s− π

4
)
[15− 4[R4(1, κ) + 12R2(1, κ)]

16(8s)

]
+ cos(s− π

4
)
[2R2(1, κ)− 1

8
+

5[21/16−R4(1, κ)]

(8s)2

]}
+O(τ−

7
2 ) .(4.2.10)

Similarly we have

dI2
d|z|

≈ |z|
2

√
2

πs

{
cos(s− π

4
)
[9 + 4R2(1, κ)

2(8s)2

]
+ sin(s− π

4
)
[2R2(1, κ)− 1

(8s)

] }
+O(τ−

7
2 ) . (4.2.11)

Next we turn to the I01 expression which involves modified Lommel functions
evaluated at β+w and s. With β = β+ , ε(β, κ), σ1(β, κ) and σ2(β, κ) become

ε(β+, κ) =
|z|+ i

√
3τ

2s
, (4.2.12)

σ1(β+, κ) =
τ + i

√
3 |z|

4πs
, (4.2.13)

σ2(β+, κ) =
κ

2s

(τ + i
√

3|z|)(τ + |z|)
|z|+ i

√
3τ

. (4.2.14)
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Inserting Eqs. (4.2.12-14) into Eqs. (E.31) and (E.32), we have

Λ0(β+w, s) ≈ 1

2
e−

|z|
2 eiω2t +

1

2

1√
1 + ε2(β+, κ)

√
2

πs

{
cos(s− π

4
)
[
1 +

2R4(β+, κ)

(8s)2

]

+ sin(s− π

4
)
2R2(β+, κ)

(8s)

}
+O(τ−

7
2 ) , (4.2.15)

Λ1(β+w, s) ≈ 1

2
e−

|z|
2 e−iω2t − 1

2

1√
1 + ε2(β+, κ)

√
2

πs
×

×
{

cos(s− π

4
)
[2[R2(β+, κ)− 2]

(8s)
− 40

R4(β+, κ)

(8s)3

]
− sin(s− π

4
)
[
1 +

2[R4(β+, κ) + 12R2(β+, κ)]

(8s)2

]}
+O(τ−

9
2 ) , (4.2.16)

where we have used

σ1(β+, κ)√
1 + ε2(β+, κ)

=
1

2
, (4.2.17)

ε(β+, κ)σ2(β+, κ)√
1 + ε2(β+, κ)

=
1

2
, (4.2.18)

When Eq. (4.2.15) is inserted into the expression for I01, the oscillatory term in τ
cancels leaving us with

I01 ≈ 1

2
√

3
=
{

1√
1 + ε2(1, κ)

√
2

πs

[
cos(s− π

4
)(1 +

2R4(β+, κ))

(8s)2
)

+ sin(s− π

4
)
2R2(β+, κ)

(8s)

]}
+O(τ−

7
2 ) , (4.2.19)

and

dI2
d|z|

≈ 1

2
√

3
=
{

1√
1 + ε2(1, κ)

√
2

πs

[
cos(s− π

4
)
(2[R2(β+, κ)− 2]

8s

)

− sin(s− π

4
)
(
1 +

2[R4(β+, κ) + 12R2(β+, κ)]

(8s)2

)]}
+O(τ−

7
2 ) , (4.2.20)

Now all of the contributions are at hand to obtain, through O(τ−
7
2 ), the asymptotic

forms for the Green functions. However, since the expressions are lengthy and not
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particularly illuminating, we list only the leading terms. Due to the simple analytic
form of the bound state contribution, we list only the phonon portions:

GSG
p (x, x′, τ) ≈

√
2

πs

{
cos(s− π

4
) +

1

8s
sin(s− π

4
)

}
+O(τ−

5
2 ) , (4.2.21)

Gφ4

p (x, x′, τ) ≈
√

2

πs

{
cos(s− π

4
)
[ γ0

6
√

3
=
(

1√
1 + ε2(β+, κ)

)

+
1

8

(
γ2 −

γ0

3
− 3

)(2R2(1, κ)− 1

8

)
+ 2

]
− sin(s− π

4
)
[γ1sgn(z)

12
√

3
=
(

1√
1 + ε2(β+, κ)

)]}
+O(τ−

3
2 ) , (4.2.22)

GDQ
p (x, x′, τ) ≈

√
2

πs
cos(s− π

4
)− 1

2

√
2

πs+

cos(s+ −
π

4
)
[2R2(1, κ+)− 1

8

]
+O(τ−

3
2 ) ,

(4.2.23)
where in Eq. (4.2.23), κ+ ≡ w+/s+ .

One may notice that although we have shown that there is no linear τ term
in the phonon contributions to the Green functions, the full Green functions have
a linear τ term due to the first bound state, namely,

θ(τ)τf ∗b,i(x)fb,i(x
′) . (4.2.24)

This term may be understood by realizing that when computing the response of
a soliton to a perturbation, the effect of this term is to produce a coefficient of
the translation mode fb,1(x) which increases with time. Therefore, the soliton will
move from its initial position as time progresses. Hence in this case, the linear
term is required to describe the translation of the soliton.

The secularity referred to in the introduction is made evident by the linear
τ behavior in the coefficient of the translation-mode contribution to the full Green
function. Indeed, the use of the full Green function in a perturbation theory of
kink dynamics in the presence of external influences is equivalent to the procedure
introduced by Fogel et al.[37]. The use of the collective-coordinate method avoids
the secularity associated with the translation mode since only the “phonon” part of
the Green function is employed (together with the contribution from other bound
states, if any (N ≥ 2)).

4.3 Laplace Transform of the SG Green function

As mentioned in the beginning of this chapter, we can obtain analytic forms for
the Laplace transform of the Green functions. In the interest of brevity we present
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only the transformation for the SG Green functions although the methods below
also apply to the other models (φ4 and DQ). From Eq. (4.1.34) we see that
Laplace transform of the SG Green function is made up of a sum of the Laplace
transform of several Bessel functions plus the Laplace transform of the modified
Lommel functions. The Bessel function transforms are easily found in the tables
[93] or may be written as derivatives of known transforms and therefore we merely
present these results. Defining the Laplace transform of a function F (τ) to be

F̄ (s̄) = L[F (τ)] ≡
∞∫
0

dτe−s̄τF (τ) , (4.3.1)

we easily obtain the following:

L
[
θ(τ − |z|)J0(

√
τ 2 − |z|2)

]
=
e−|z|

√
s̄2+1

√
s̄2 + 1

, (4.3.2)

L
[
θ(τ − |z|)

√
τ 2 − |z|2J1(

√
τ 2 − |z|2)

]
=

[
1√
s̄2 + 1

+ |z|
]
e−|z|

√
s̄2+1

s̄2 + 1
(4.3.3)

L
[
τθ(τ − |z|)J0(

√
τ 2 − |z|2)

]
=

[
1√
s̄2 + 1

+ |z|
]

s̄√
s̄2 + 1

e−|z|
√

s̄2+1

√
s̄2 + 1

(4.3.4)

With these expressions in hand it remains to compute the Laplace transform of
the modified Lommel functions.

4.3.1 Laplace Transform of θ(τ − |z|)Λn(w, s)

Recalling the definition for the modified Lommel functions of two variables, we
write for Λn(w, s)

Λn(w, s) =
∞∑

m=0

(√√√√τ − |z|
τ + |z|

)n+2m

Jn+2m(
√
τ 2 − |z|2) . (4.3.5)

Since we always have τ > |z|, this sum converges uniformly and therefore in taking
the Laplace transform of the sum we can interchange the order of integration
and summation. Therefore we are led to consider the Laplace transform of the
summand in Eq. (4.3.5) which is found in the tables [94] to be

L
[(√√√√τ − |z|

τ + |z|

)n+2m

Jn+2m(
√
τ 2 − |z|2)

]
=

e−|z|
√

s̄2+1

√
s̄2 + 1(

√
s̄2 + 1 + s̄)n+2m

. (4.3.6)
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Therefore

L[θ(τ − |z|)Λn(w, s)] =
∞∑

m=0

e−|z|
√

s̄2+1

√
s̄2 + 1

[
1√

s̄2 + 1 + s̄

]n+2m

=
e−|z|

√
s̄2+1

√
s̄2 + 1

[
1√

s̄2 + 1 + s̄

]n−2
1

2s̄

1√
s̄2 + 1 + s̄

,(4.3.7)

where in evaluating the sum I have used the fact that when doing an inverse
Laplace transform, <(s̄) > 0 and therefore the sum converges uniformly. Now all
of the components are at hand to obtain the expression for the Laplace transform
of the SG Green function. In doing the algebra, quite a bit of cancellation occurs
leaving us with a remarkably simple expression for the Laplace transform

ḠSG(x, x′; s̄) ≡ L[G(x, x′, τ)]

=
e−|z|

√
s̄2+1

2

{
1√
s̄2 + 1

− β2

s̄2
√
s̄2 + 1

− β3sgn(z)

s̄2

}
. (4.3.8)

4.3.2 Bromwich Representation for ψ(x, t)

The derivation of the Laplace transform is not merely an academic execise as it
may prove useful for the numerical evaluation of the phonon field. To see that this
is the case we now substitute the inverse Laplace representation of the SG Green
function into the integral expression for ψ given in Eq. (3.4.12)

ψ(x, t) =

∞∫
−∞

dx′
∞∫

−∞

dt′
1

2πi

c+i∞∫
c−i∞

ds̄ es̄τ ḠSG(x, x′; s̄)I(x′, t′) (4.3.9)

=
1

2π

∞∫
−∞

dx′
∞∫

−∞

dy

∞∫
−∞

dt′ ḠSG(x, x′; c+ iy)e−(c+iy)(t′−t)I(x′, t′) ,(4.3.10)

where c is a positive real constant which is greater than 0 (i.e. this is the real
part of the “right-most” pole of ḠSG(x, x′; s̄)). To make further analytic progress,
we consider a specific perturbation, namely we choose a linear coupling function
F = Φ and a time-independent perturbation which is well localized in space

v(x) = λ
{
e−(x−x0)2 − e−(x+x0)2

}
, (4.3.11)

(this is one of the perturbations examined in Chapter 5). In this case the inhomo-
geneous term I(x′, t′) may be written as

I(x′, t′) = ψ0(x
′ +X(t′))sech2(x′)− φ′c(x

′)

M0

∞∫
−∞

dz φ′c(z)ψ0(z +X(t′))sech2(z) ,

(4.3.12)
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where the “background response” field ψ0 satisifies

−ψ′′0 + ψ0 = v(x) . (4.3.13)

We can solve for ψ0 by Fourier transforming and to this end we introduce the
following inverse transforms

ψ̄0(k) =
1√
2π

∞∫
−∞

dx eikxψ0(x) , (4.3.14)

v̄(k) =
1√
2π

∞∫
−∞

dx eikxv(x) . (4.3.15)

By substituting these transforms into Eq. (4.3.13) we see that they are related by

ψ̄0(k) =
v̄(k)

1 + k2
. (4.3.16)

Next we consider the t′ integral in Eq. (4.3.10)

∞∫
−∞

dt′e−(c+iy)t′I(x′, t′) . (4.3.17)

From Eq. (4.3.12) we see that the only t′ dependence occurs through X(t′). To
lowest order we approximate this by

X(t′) ≈ X0 + V0t
′ , (4.3.18)

where X0 ≡ X(0) and V0 ≡ Ẋ(0). By assuming Eq. (4.3.18) to be valid, we restrict
ourselves to the study of the case in which the kink scatters off the perturbation
to ∞. We are therefore led to consider the integral

J(ξ, y; c) ≡
∞∫

−∞

dt′e−(c+iy)t′ψ0(ξ +X0 + V0t
′) (4.3.19)

=
ei(ξ+X0)(y−ic)/V0

V0

∞∫
−∞

dζ e−iζ(y−ic)/V0ψ0(ζ) , (4.3.20)

where ξ is either x′ or z as required by Eq. (4.3.12). Although the integrand seems
to diverge as ζ → −∞ it does not since one can show that for the perturbation
chosen we have

v̄(k) ≈ e−k2

(4.3.21)
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and therefore

ψ0(x) ≈
∞∫

−∞

dk
e−k2

e−ikx

1 + k2
, (4.3.22)

and hence ψ0(x) will decay faster than e−x2
. Since the integral converges we may

analytically continue it and obtain the result

J(ξ, y; c) =
√

2π
ei(ξ+X0)(y−ic)/V0

V0

ψ̄0

(y − ic

V0

)
. (4.3.23)

Having carried out the above integration we return to the expression (4.3.12)
for I(x′, t′) and find that this integral occurs inside the spatial integral over z and
therefore we consider the integral

√
2π

V0

eiX0(y−ic)/V0ψ̄0

(y − ic

V0

) ∞∫
−∞

dz φ′c(z)sech
2(z)eiz(y−ic)/V0 . (4.3.24)

Again it seems that this integral

∞∫
−∞

dz sech3(z)eiz(y−ic)/V0 (4.3.25)

may not converge due to the factor of ezc/v0 (I have used the fact that φ′c(z) =
2sech(z) for SG). Since c needs only to be > 0, we can choose it such that

c

V0

< 3 (4.3.26)

so that the sech3(z) factor will dominate. Using the fact that the integral does
indeed exist, we analytically continue a standard result from the Tables [95] to
obtain

∞∫
−∞

dz sech3(z)eiz(y−ic)/V0 = π

[(
4− ic

V0

)2

+ 1

]
sech

[π(y − ic)

2V0

]
. (4.3.27)

Using all of these pieces we can write another integral expression for the phonon
field

ψ(x, t) =
ectecX0/V0

V0

√
2π

∞∫
−∞

dx′
∞∫

−∞

dyḠSG(x, x′; c+ iy)
eiyt

coshx′
ψ̄0

(y − ic

V0

)
×

×
{
eix′(y−ic)/V0

cosh(x′)
− 2π

M0

[(y − ic

V0

)2
+ 1

]
sech

[π(y − ic)

2V0

]}
. (4.3.28)
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Again we must evaluate a two-dimensional integral to obtain values for ψ, however
this integrand has a rapidly decaying factor, namely the Laplace transform of the
Green function. However, the exponential factor

eix′(y−ic)/V0 (4.3.29)

still oscillates rapidly in y since typical values of X0 and V0 are -10 and .3 respec-
tively. In addition we have an exponential term in time which also yields rapid
oscillations for large t. However this type of oscillating behavior may prove to be
the key to a quick and efficient evaluation of Eq. (4.3.28). The key lies in the fact
that the evaluation of Eq. (4.3.28) is written in “Fourier transform form”. The
fact that the integrand in Eq. (4.3.28) already involves Fourier transform of the
ψ0 field and therefore the possibility of using the convolution theorem exists. If
nothing else, we have in Eq. (4.3.28) an approximate analytic expression (in terms
of an integral) of the time Fourier transform for the ψ field

Assuming that Fourier transform methods are not tractable, the ease with
which Eq. (4.3.28) is evaluated depends on whether the oscillations are damped
quickly enough by the decaying factors. In addition to the rapid decay caused
by the Laplace transform of the Green function, the Fourier transform of the
background field is also rapidly decaying. For the perturbation examined in this
section, we have the following analytic form for ψ̄0:

ψ̄0 =
2
√
π cos kx0e

−k2/4

1 + k2
. (4.3.30)

With this additional decaying factor, it is quite possible that this integral may be
done numerically. One of the major problems with the previous two-dimensional
integral expression for the ψ field is that one had to evaluate the Green function
itself, which involves calculating and summing approximately 200 Bessel functions.
Even when these codes are vectorized and run on a Cray-1 computer, these ma-
nipulations require quite a bit of time. In view of the problems encountered with
the numerical integration of the ψ PDE (see §5.2), numerical evaluation of ψ using
Eq. (4.3.28) is a very attractive possibility which is currently under investigation.

4.4 Representative plots

To illustrate the behavior of the Green functions we present several plots of the
phonon part of the SG Green function [plots for the other Green functions derived
look very similar] . The numerical values for these plots are easily obtained from
the formulae in Appendix E.

We can get a feel for how the Green functions should behave by recalling
that G(x, x′, t − t′) represents the response of the field at (x, t) due to a delta
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function source at (x′, t′). To make this more concrete we can imagine striking one
of the pendula of the sine-Gordon pendulum chain with a sharp blow and watching
the response of the other pendula. We expect to see a pulse move out from the
“hit pendulum” and propagate toward the ends of the chain. In Figure 4.1 we plot
the Green function vs. x and x′ for various values of t = τ (we have chosen t′ = 0).
Fixing x′ = 8 ( i.e. the pendulum at x = 8 is struck) in Figure 4.1a, we move in the
direction of increasing x, starting at x = 0. Until x is on the order of 2, G(x, x′, τ)
is zero, meaning that the disturbance has not yet had enough time to propagate
from x = 8 to x < 2 (or x > 14). For τ = 4, time has progressed (recall we
have fixed t′ = 0) and the disturbance has propagated further outwards. At t = 8
the pulse reaches x = 8. In Figures 4.1e to 4.1h the pulse has propagated off the
scales, leaving behind “ripples”. As τ further increases the amplitude continues to
decrease in accord with the asymptotic behavior derived in section 4.2.

If one were to follow the procedure outlined in the preceding paragraph
with x′ = 3, one would note that before the pulse arrives at a particular position,
the Green function is not zero. This is because we have plotted the phonon con-
tribution, which has a non-retarded part which exactly cancels the bound state
contribution. It is this non-retarded part which gives a non-zero value for the
phonon contribution to the Green function “before the pulse arrives”. We see this
only near x = x′ = 0 because the bound state contribution is proportional to e−|z|

[SG], sech(x)sech(x′) [φ4] or e−|x|e−|x
′| [DQ].

Since the computation of the phonon response ψ involves integrals of the
Green function over x′ and t′, it is interesting to see the behavior of G(x, x′, t− t′)
for fixed x and t. In Figure 4.2 we plot the sine-Gordon Green function for x = 25
and t = 50. One of the interesting features is the step function which represents
the “light cone”. In performing the numerical integrals one must be careful not to
integrate through this step function since most numerical integrators cannot handle
such discontinuities. Another feature which presents some numerical difficulties is
the oscillation in time. Of course this oscillation will represent problems only if
we must integrate over several of these periods (which is in fact the case for the
perturbations examined in Chapter 5).

In Figure 4.3 we present illustrates one of the asymptotic limits of the
Green functions. The fact that the Green functions are not functions solely of
x − x′ is a consequence of the broken translational invariance which results from
the introduction of a kink. The only dependence on x and x′ which is not through
the combination x − x′ enters through the functions βi (SG) and γi (φ4). All
of these functions depend on x and x′ through various combinations of tanh(x)
and tanh(x′). For both x and x′ large these β and γ factors are constants so one
expects that for both x and x′ large the Green functions should depend only on
x− x′. This fact is illustrated by the plot in Figure 4.3. One can understand this
fact analytically by recalling that the functions fk(x) which are used to define the
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Figure 4.1: The time evolution for the phonon contribution to the SG Green

function G(x, x′, t− t′) in the x− x′ plane.
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Figure 4.2: The phonon contribution to the SG Green function G(x, x′, t − t′) in

the x′ − t′ plane.
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Figure 4.3: The SG Green function G(x, x′, t − t′) in the x − x′ plane. Note the

reflection symmetry about the x = x′ line.
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Green functions are asymptotically plane waves for large x and hence this behavior
is to be expected. This behavior may prove useful for certain perturbations if one
must perform integrals only over this translationally invariant region.

Figures 4.4 and 4.5 show plots of the real part of the Laplace transform of
the sine-Gordon Green function. In Figure 4.4 we plot the real part of the Laplace
transform ḠSG(x, x′, s̄) vs. x and x′ for fixed s̄ = 2+2i. Here we see the dominance

of the exponential factor e−|z|
√

s̄2+1 in Eq. (4.3.8) since the modulus of s̄ is large
enough so that the factors which do not depend on x − x′, that is the factors
involving β2 and β3, are small compared with the first term in Eq. (4.3.8). The
rapid decay in x′ shown in Figure 4.4 makes the integral in Eq. (4.3.28) converge
rapidly. One might think that the cusp shown in this figure would pose a problem
when Eq. (4.3.28) is numerically evaluated. However, one must realize that the
integral in Eq. (4.3.28) is not over the x − x′ plane but over the x′ − s̄i plane
where s̄i is the imaginary part of the Laplace transform variable. To get a feel for
the dependence on the Laplace transform variable s̄, we plot in Figure 4.5 the real
part of the Laplace transform ḠSG(x, x′; s̄) in the complex s̄ plane for x = 2.0 and
x′ = 1.0. The interesting feature in this plot is the dependence on the imaginary
part of s̄ which is a rapid decay. Again this is not surprising since the analytic
expression given in Eq. (4.3.8) involves an exponential factor of the form

e−|z|
√

s̄2+1 .

Since the Bromwich integral for the ψ field involves integrating in the complex s̄
plane along a line parallel to the imaginary s̄ axis, this rapid decay should greatly
facilitate the numerical calculations.
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Figure 4.4: The real part of the Laplace transform of the sine-Gordon Green

function ḠSG(x, x′; s̄) plotted vs. x and x′ for s̄ = 2 + 2i.
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Figure 4.5: The real part of the Laplace transform of the sine-Gordon Green

function ḠSG(x, x′; s̄) plotted in the complex s̄ plane for x = 2.0 and x′ = 1.0.
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