
Chapter 6

Thermal Noise

Since every physical system is subject to thermal fluctuations, it is important to
consider the effects of such noise on the motion of kinks. The two standard meth-
ods which are employed are the Langevin [107] and Fokker-Planck [107, 108, 109]
techniques. Each has its advantages and disadvantages. Although the Langevin
approach is somewhat simpler to use, it is an equilibrium calculation and there-
fore one does not get information about the approach to equilibrium. This is an
important question for the soliton bearing systems we are dealing with because we
have essentially two quite different degrees of freedom to treat, namely the kink
itself and the phonons. It is often assumed that the phonon degrees of freedom are
adiabatic, that is, if the system is jarred from equilibrium, it is assumed that the
phonon degrees of freedom will equilibrate very quickly about the instantaneous
kink position and velocity. Although this seems to be quite a reasonable assump-
tion, one must really confirm this and the Fokker-Planck technique is one way to
do this.

In the Fokker-Planck method [108], one writes an equation for the time-de-
pendent, phase-space probability distribution function, P (X, p; t). If the system
is not driven, P (X, p;∞) represents the equilibrium distribution function familiar
from classical equilibrium statistical mechanics. In the driven case, P (X, p;∞)
represents the steady-state distribution function. With the full time-dependent
function one can compute time-dependent averages such as

〈X(t)〉 =

∞∫
−∞

dX

∞∫
−∞

dp X P (X, p; t) .

Since one can also compute 〈X(t)〉 via the Langevin approach, it is not here where
the strength of the Fokker-Planck method lies. Rather, one can find the time
needed to reach equilibrium. This is done by solving the Fokker-Planck equation
for P (X, p; t) with initial conditions which are far from equilibrium such as

P (X, p, 0) = δ(X −X0)δ(p− p0) .
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Although one cannot often find the exact time-dependent solution to the Fokker-
Planck equation, the question of the equilibration time can be settled by finding
only the lowest nonzero eigenvalue. In addition to the standard methods available
for this, there are more modern supersymmetric methods [110] which can also be
of great value.

A third and somewhat nonstandard approach has been used by Wada and
Schrieffer [67] (WS). They calculate a “diffusion constant” by using the fluctuation-
dissipation theorem [67, 111]

D = lim
t→∞

〈X2(t)〉
2t

.

The calculation needed here is of course 〈X2(t)〉. To this end, they begin with a
stationary kink and calculate the shift in the kink position (X(t)) which results
from the collision of a kink with a phonon packet which they assume to be thermally
excited according to the distribution function

Peq(ψ, π) = e−βHph ,

where β = T−1 (kB = 1 in our units) and Hph is given by

Hph =
∫ [1

2
π2 +

1

2
ψ′2 +

1

2
ψ2U ′′(φc)

]
.

Assuming such a distribution function seems to be quite a reasonable choice, how-
ever no basis was given for the choice. It also implicitly assumes that the phonons
are in equilibrium but the kink is not. In real physical systems this distinction
cannot be made. For example, in the sine-Gordon pendulum chain, such ther-
mal fluctuations could be simulated by submerging the entire chain into a viscous
medium at some finite temperature. All of the pendula experience a random force,
so when a transformation is made to another set of basis functions, it is unrea-
sonable to assume that some of these modes feel the random force while others do
not. In disregarding this feature, WS’s method yields the unphysical result that
the initial velocity of the kink is undamped (see section 6.1), not at all like the
Brownian motion one might expect in view of the large body of evidence which
indicates that the kink behaves like an extended Newtonian particle. One of the
conclusions of this chapter is that we do indeed find that to lowest order the kink
behaves like a Brownian particle. We illustrate this by using both the Langevin
and Fokker-Planck methods. However, before we consider these techniques, cal-
culations are presented which verify the claim made above with regards to the
undamped motion of the kink.
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6.1 Thermalized Phonon Ansatz

To demonstrate that the assumptions of WS imply that the initial velocity of a
particle is undamped, we explicitly calculate 〈X2(t)〉 (through second order) using
the equation of motion (3.4.7) derived in Chapter 3. Since WS assume no direct
coupling to a heat bath, the perturbation is zero, in which case Eq. (3.4.7) takes
on the form

Ẍ(t) = −ηψẊ(t) + Fψ , (6.1.1)

where we have taken ψ0 to be zero and introduced the following definitions

ηψ ≡
−2

M0

∫
dx ψ̇(x, t)φ′′c (x) , (6.1.2)

Fψ ≡
1

2M0

∫
dx U ′′′[φc(x)]ψ

2(x, t)φ′c(x) . (6.1.3)

Above we claim that Eq. (6.1.1) holds through second order. However, since we
have no (formal) perturbation, this statement requires clarification. In using WS’s
approach, the perturbation enters the problem indirectly through the assumption
that the phonons are thermally distributed. Therefore the proper expansion pa-
rameter for low temperatures is T/M0 where M0 is the kink rest energy in our
units. Since the phonons are Gaussian-distributed (see below), we can use the
equipartition theorem to assign a

√
T power to the ψ field. In section 6.2 we show

that the kink also obeys the equipartition theorem to lowest order and therefore we
assign a

√
T power to Ẋ. Therefore, the right-hand side of Eq. (6.1.1) is correct

to order T , that is to second order in
√
T .

WS used Eq. (6.1.1) without the “inertial” term ηψ, and performed averages
over the phonon degrees of freedom by assuming for the equilibrium distribution
function for the phonons,

Peq = e−βHph , (6.1.4)

with Hph given by

Hph =
∫ [1

2
π2(x, t) +

1

2
ψ′2(x, t) +

1

2
ψ2(x, t)U ′′[φc(x)]

]
. (6.1.5)

To do the explicit calculations we use the following normal mode representations

ψ(x, t) =
∑
k

1√
2ωk

[
bkfk(x)e

−iωkt + b∗kf
∗
k (x)e

iωkt
]
, (6.1.6)

π(x, t) =
∑
k

−i
√
ωk
2

[
bkfk(x)e

−iωkt − b∗kf
∗
k (x)e

iωkt
]
, (6.1.7)
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which allows us to write
Hph =

∑
ωk|bk|2 . (6.1.8)

Using this representation we present the following quantities which have been com-
puted in Appendix F:

〈b∗kbk′〉 =
T

ωk
δk,k′ , (6.1.9)

〈ψ2(x, t)〉 = T
∑
k

|fk(x)|2

ω2
k

, (6.1.10)

where the average denoted by the brackets 〈〉 is defined by

〈F (bq, b
∗
q′)〉 =

∏
k

∞∫
−∞

dbk
∞∫
−∞

db∗k F (bq, b
∗
q′)e

−βωk|bk|2

∏
k

∞∫
−∞

dbk
∞∫
−∞

db∗k e
−βωk|bk|2

(6.1.11)

In addition one finds with the use of Eq. (6.1.11) that 〈Fψ〉 = 〈ηψ〉 = 0. Finally
we shall make use of the following correlation functions which are also computed
in Appendix F:

〈ηψ(t)ηψ(t′)〉 =
4T

M2
0

∑
k

|
∫
dxfk(x)φ

′′
c (x)|2 cos[ωk(t− t′)] , (6.1.12)

and

〈Fψ(t)Fψ(t′)〉 =
T 2

4M2
0

∑
k,q

|A(k, q)|
ω2
kω

2
q

{
cos[(ωk + ωq)(t− t′)] + cos[(ωk − ωq)(t− t′)] ,

}
(6.1.13)

where
A(k, q) ≡

∫
dx U ′′′[φc(x)]φ

′
c(x)fk(x)fq(x) . (6.1.14)

The correlation in Eq. (6.1.13) is different from that of usual random forces since
it has a long time tail due to the term when ωk = ωq, whereas the “kink-mass
fluctuation” correlation in Eq. (6.1.12) is appreciable only for short times (t− t′)
since ωk ≥ 1.

To obtain the velocity distribution we solve the “Langevin equation” given
in Eq. (6.1.1) with the use of an integrating function which yields

Ẋ(t) = Ẋ(t0)e
−

t∫
t0

dτ ηψ(τ)

+

t∫
t0

dτFψ(τ) +O(ψ3) . (6.1.15)
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Following WS, we turn on the heat bath adiabatically and take t0 → −∞ so that
ηψ → e

δt
2 ηψ, Fψ → e

δt
2 Fψ with δ → 0. In squaring Eq. (6.1.15) we encounter the

following terms

t∫
−∞

dτ

t∫
−∞

dτ ′〈ηψ(τ)ηψ(τ ′)〉eδ(τ+τ ′)/2 =
4T

M2
0

∑
k

|
∫
dxfk(x)φ

′′
c (x)|2

ω2
k

(6.1.16)

=
T

M0

, (6.1.17)

where the limit δ → 0 has been taken without encountering any singularities and
Eq. (3.1.15) has been used. Similarly one can show [112]

t∫
−∞

dτ

t∫
−∞

dτ ′〈Fψ(τ)Fψ(τ ′)〉eδ(τ+τ ′) (6.1.18)

=
T 2

M2
0

∑
k,q

|A(k, q)|2

ω2
kω

2
q

[ 1

(ωk + ωq)2 + δ2
+

1

(ωk − ωq)2 + δ2

]
(6.1.19)

≡ αT 2 . (6.1.20)

In both sine-Gordon and φ4 models [67, 70] A(k, q) ≈ ω2
k − ω2

q ; hence, there is no
singularity in Eq. (6.1.20) at ωk = ωq and α is finite. Using these relations we find

〈Ẋ2(t)〉 = Ẋ2(0)e2T/M0 + αT 2 +O(T 3) , (6.1.21)

which demonstrates the undamped initial velocity. Integrating Eq.(6.1.21) results
in [112]

〈X2(t)〉 = Ẋ2(0)(1 +B)(t− t0)
2 + CẊ2(0) + (t− t0)D , (6.1.22)

where

B =
1

t− t0

t∫
t0

dt′
t′∫

−∞

dτ ′
t′∫

−∞

dτ〈ηψ(τ ′)ηψ(τ)〉eδ(τ+τ ′)/2 , (6.1.23)

=
T

M0

, (6.1.24)

C =

t∫
−∞

dt′
t′∫

−∞

dt′′
t∫

−∞

dτ ′
τ ′∫

−∞

dτ〈ηψ(t′′)ηψ(τ)〉eδ(t′′+τ)/2 , (6.1.25)

=
4T

M2
0

∑
k

|
∫
dxfk(x)φ

′′
c (x)|2

ω4
k

, (6.1.26)
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(t− t0)D =

t∫
t0

dt′
t′∫

−∞

dt′′
t∫

−∞

dτ ′
τ ′∫

−∞

dτ〈Fψ(t′′)Fψ(τ)〉eδ(t′′+τ) , (6.1.27)

and Eqs. (6.1.12-13) have been used. The last term in Eq. (6.1.22) represents
the WS result. We evaluate the “diffusion constant” by taking a derivative of Eq.
(6.1.22) with respect to time which after some algebra yields

D =
T 2

2M2
0

∑
k,q

δ
|A(k, q)|2

ω2
kω

2
q

{
1

[(ωk + ωq)2 + δ2]2
+

1

[(ωk − ωq)2 + δ2]2

}
. (6.1.28)

To proceed further we make use of the fact [67, 70] that A(k, q) ≈ (ω2
k−ω2

q )(k− q)
and that the limit

A(k) ≡ lim
q→−k

A(k, q)

ω2
k − ω2

q

, (6.1.29)

is finite. In the limit as δ → 0, the pole at k = −q dominates and we have

D ≈ 2T 2

M2
0

δ
∑
k

|A(k)|2

ω2
k

∑
q

1

(ωk − ωq)2 + δ2
, (6.1.30)

≈ T 2

M2
0

∑
k

|A(k)|2

|k|ωk
, (6.1.31)

which is the result of WS for the diffusion constant. Therefore although we repro-
duce the result of WS, we obtain the unphysical result alluded to above, namely
that the kink’s initial velocity is undamped. With a slight modification we include
in the next section, the direct thermal coupling to all of the degrees of freedom
and obtain the standard Brownian motion result by using a method similar to the
Langevin method used above.

6.2 Langevin Approach

Next we study what is the more physically relevant problem in which the system
is in contact with a heat bath which we represent by an additive noise term that
enters into the full field equation of motion as

Φtt − Φxx + U ′(Φ) = F (x, t)− εΦt , (6.2.1)

where a phenomenological damping term has also been added and the Gaussian
white noise term has the correlation function [113],

〈F (x, t) F (x′, t′)〉 = 2εTδ(x− x′) δ(t− t′) . (6.2.2)
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In terms of the perturbation theory presented in section 3.3 we must choose the
coupling function F [Φ,Φx] of that section to be Φ. This in turn leads via Eq.
(B.10) of Appendix B to the following second-order equation of motion for X(t)

(M0 + ξ)Ẍ(t) + (M0 + ξ)εẊ + 2ξ̇Ẋ = Fψ −G(X, t) , (6.2.3)

where G(x, t) is the effective thermal noise force for the kink

G(X, t) ≡
∞∫

−∞

dx φ′c(x−X)F (x, t) , (6.2.4)

has the correlation

〈G(X, t) G(X ′, t′)〉 = 2εTδ(t− t′)

∞∫
−∞

dx φ′c(x−X)φ′c(x
′ −X) . (6.2.5)

The fact that this effective noise is not delta-function-correlated in space reflects
the extended nature of the kink. In the case in which the nonlinear potential is
the sine-Gordon potential we can analytically evaluate this correlation and find it
to be

〈G(X, t) G(X ′, t′)〉 = 4εT δ(t− t′)
X −X ′

sinh(X −X ′)
. (6.2.6)

Therefore, although the correlation is not a delta function it is short ranged.
With the aid of an integrating factor (M0 + ξ)eεt we obtain for the first

integral of Eq. (6.2.3)

Ẋ(t) =
(M0 + ξ(0))2

(M0 + ξ(t))2
e−εtẊ(0) +

1

(M0 + ξ(t))2
e−εt

t∫
0

dt′ eεt(M0 + ξ(t′))
[
Fψ −G

]
.

(6.2.7)
Squaring Eq. (6.2.7) and keeping only lowest order terms we have

〈Ẋ2(t)〉 = e−2εtẊ2(0)− e−2εt

t∫
0

dt′
t∫

0

dt′′eε(t
′+t′′)〈G(X, t′)G(X, t′′)〉 . (6.2.8)

Since the effective noise terms in Eq. (6.2.8) are evaluated at the same spatial
point, we can evaluate the correlation analytically to give us

〈G(X, t′)G(X, t′′)〉 =
2εT

M0

δ(t′ − t′′) . (6.2.9)
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Making use of the delta function in time we have

〈Ẋ2(t)〉 = e−2εt

{
Ẋ2(0)− 2Tε

M0

t∫
0

dt′e2εt
}
, (6.2.10)

=
T

M0

+ e−2εt

{
Ẋ2(0)− T

M0

}
. (6.2.11)

From Eq. (6.2.11) we see that any kink initial velocity is indeed exponen-
tially damped in time just as a “regular” Brownian particle. Furthermore we see
that the kink degree of freedom obeys the equipartition theorem

1

2
M0Ẋ

2 =
1

2
T , (6.2.12)

which agrees with all of our previous results which state that the kink behaves like
a Newtonian particle to lowest order.

In order to proceed to higher order, we need to include terms which are of
the order ψ3, that is of order T 3/2. Referring to Eq. (3.4.7) we see that this means
that we must include in Eq. (6.2.3)

Ẋ2

M0

∫
ψ′φ′′c , (6.2.13)

in addition to ψ3 terms. The presence of the Ẋ2 term requires that we find an
integrating factor other than that used for the first-order calculation, or deal with
this term perturbatively. Both methods are presently under investigation.

6.3 Fokker-Planck Approach

In the preceding section we studied the motion of a kink subject to a fluctuating
force by adding phenomenological damping and driving terms to the center of mass
equation derived in section 3.4. In this section we first write a Langevin equation
for the entire field Φ, derive the corresponding Fokker-Planck equation and then
make the transformation to the kink variables. The main benefit of this approach
is that we can attempt to answer the question of the approach to equilibrium.
Implicit in the work of the previous section is the assumption that the phonons
equilibrate more quickly than does the kink degree of freedom. An answer to this
question can be found through the Fokker-Planck method.
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6.3.1 The Full-Field Fokker-Planck Equation

We begin our derivation of the Fokker-Planck equation by writing the Langevin
equation for the entire field Φ(x, t)

Φtt − Φxx + U ′[Φ] + εΦt = F (x, t) , (6.3.1)

where x and t are dimensionless space and time variables and the thermal noise
term F (x, t) obeys the correlation function

〈F (x, t) F (x′, t′)〉 = 2εTδ(x− x′)δ(t− t′) . (6.3.2)

In order to avoid any assumptions regarding the speed with which the momentum
degrees of freedom equilibrate, we write a Fokker-Planck equation for a phase
space distribution function P [Φ(x, t),Π0(x, t)]. To this end, we rewrite Eq. (6.3.1)
in terms of the field Φ(x, t) and its conjugate momentum Π0(x, t):

Φ̇ = Π0 (6.3.3)

Π̇0 = Φxx − U ′[Φ]− εΦt + F (x, t) , (6.3.4)

where as before Φ and Π0 are canonically conjugate variables. The standard form
[108] for the bivariate functional Fokker-Planck equation is

∂P (Φ,Π0; t)

∂t

=

∞∫
−∞

dx

{
− δ

δΦ

[
AΦ[Φ,Π0]P (Φ,Π0; t)

]
− δ

δΠ0

[
AΠ0 [Φ,Π0]P (Φ,Π0; t)

]

+
1

2

δ2

δΦ2

[
BΦΦ[Φ,Π0]P (Φ,Π0; t)

]
+

1

2

δ2

δΠ2
0

[
BΠ0Π0 [Φ,Π0]P (Φ,Π0; t)

]
+

δ2

δΦδΠ0

[
BΦΠ0 [Φ,Π0]P (Φ,Π0; t)

]}
, (6.3.5)

where the A and B functions are defined by [108]

AΦ[Φ,Π0] = lim
∆t→0

〈∆Φ〉
∆t

, (6.3.6)

AΠ0 [Φ,Π0] = lim
∆t→0

〈∆Π0〉
∆t

, (6.3.7)

BΦΦ[Φ,Π0] = lim
∆t→0

〈(∆Φ)2〉
∆t

, (6.3.8)

BΦΠ0 [Φ,Π0] = lim
∆t→0

〈∆Φ∆Π0〉
∆t

, (6.3.9)
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BΠ0Π0 [Φ,Π0] = lim
∆t→0

〈(∆Π0)
2〉

∆t
, (6.3.10)

and we have omitted the space-time dependence of the fields for notational sim-
plicity. Using Eqs. (6.3.3) and (6.3.4) and the correlation function (6.3.2), it is
easy to show that BΦΦ and BΦΠ0 are zero while the others lead to the following
equation

∂P (Φ,Π0; t)

∂t

=

∞∫
−∞

dx

{
−Π0

δ

δΦ
P (Φ,Π0; t)−

δ

δΠ0

[(
Φxx − U ′[Φ]− εΠ0

)
P (Φ,Π0; t)

]

+ Tε
δ2

δΠ2
0

P (Φ,Π0; t)

}
. (6.3.11)

As it stands, this equation does not give one much information. However one can
easily show that the (time-independent) equilibrium solution may be written as

P eq(Φ,Π0) = e−βH , (6.3.12)

with the Hamiltonian given by

H =
1

2
Π2

0 +
1

2
Φ2
x + U [Φ] , (6.3.13)

which one would expect from equilibrium statistical mechanicals. The most im-
portant aspect of this solution is evident when the Hamiltonian is written in terms
of the new transformed variables X, p, ψ, π

H =
1

2M0

(p+
∫
πψ′)2

(1 + ξ/M0)2
+

∫
Hf , (6.3.14)

where

Hf =
1

2
π2 +

1

2
ψ′2 + V (ψ, φc) , (6.3.15)

V (ψ, φc) = U [Φc + ψ]− ψU ′[φc]− U [φc] , (6.3.16)

where the background field ψ0 has been set to zero. As mentioned before we do
not have decomposition of the Hamiltonian into terms which are purely kink and
purely phonon degrees of freedom. While the absence of such a decomposition
complicates the calculations, it leads to some interesting physics. For example,
consider the average value which the ψ field attains

〈ψ〉 =
∫
DψDπψe−βH . (6.3.17)
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Using the equation which Ẋ satisifies (Eq. (A.11)),

Ẋ =
p+

∫
πχ′

M0(1 + ξ/M0)2
, (6.3.18)

we can rewrite the Hamiltonian as

H =
1

2
M0(1 + ξ/M0)

2Ẋ2 +
∫
Hf . (6.3.19)

One might object to such a substitution since Eq. (6.3.18) applies only to the
stationary path since it is theX equation of motion whereas the functional integrals
required in Eq. (6.3.17) involve variations off of this path. The resolution of this
apparent problem is that the major contribution to the functional integral occurs
along the stationary path, with corrections being of higher order (in temperature).
Substitution of Eq. (6.3.19) into Eq. (6.3.17) shows that we have a term which
is linear in the ψ field (ξ depends on ψ linearly) with a coefficient proportional to
Ẋ2. This means that in doing the functional integral over ψ one must complete
the square in the ψ variable, giving rise to a nonzero equilibrium value for ψ which
depends on Ẋ, indicating once again the intricate relationship which exists between
the kink motion and the “phonons”.

6.3.2 Fokker-Planck Equation for the Kink Variables I.

As mentioned above, the Fokker-Planck equation for the full field Φ does not
give much information about the kink motion. The obvious thing to do is to
make the transformation to the kink and phonon degrees of freedom. One might
suspect that since the variable transformation is complex the transformation of
the functional derivative operators could be equally complex. This is indeed the
case as evidenced by the derivations presented in Appendix G. One of the benefits
of using this transformation, however, is that it is a canonical transformation and
therefore the Jacobian of the transformation is unity. This is an important fact
because in the following we shall perform integrals over the phonon degrees of
freedom to obtain a Fokker-Planck equation for the reduced distribution function
P (X, p; t).

Using these transformation laws we can derive a Fokker-Planck equation
for the new phase space distribution function P [X, p, ψ, π; t]. Since this equation
is quite complex and not very illuminating we do not present it. Rather we shall
study an equation for a reduced distribution function P (X, p; t). The standard
procedure for obtaining a solution for the reduced function [109, 114] is to make a
general series expansion for the total distribution function

P [X, p, ψ, π; t] =
∞∑
n=0

Pn(X, p, t)e
−βπ2/2Hn[π(x, t)/

√
T ]αn[ψ(x, t); t] , (6.3.20)
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where the functions Hn are Hermite polynomials and the αn are functions which
need to be determined. However this technique is not a good starting point for our
system because we know that our equilibrium solution (6.3.12) has non-separable
terms such as

p
∫
πψ′ (6.3.21)

which cannot be reproduced by the general series representation given in Eq.
(6.3.20). Therefore one is forced to make some kind of ansatz for P [X, p, ψ, π; t].
We base our ansatz on the assumption that the phonon degrees of freedom equil-
briate much faster than the kink degrees of freedom, that is we make an adiabatic
ansatz. The specific form of the ansatz is

P [X, p, ψ, π; t] = P (X, p; t)P eq
ph [ψ, π|X, p] , (6.3.22)

where the function P eq
ph [ψ, π|X, p] represents the equilibrium distribution function

for the phonons given that the kink degrees of freedom are fixed. One way to
obtain this function would be to derive a Fokker-Planck equation for the phonons
and solve for the equilibrium distribution function.

6.3.3 Fokker-Planck Equation for the Phonon Variables

The method for deriving the phonon functional Fokker-Planck equation is the same
as that used to derive the full field equation. We begin with a Langevin equation
for the phonons which is obtained from Eq. (3.4.11)

ψtt − ψxx + U ′′[φc]ψ = F(x, t)− εẊφ′c(x−X)− εψt , (6.3.23)

where

F(x, t) ≡ F (x, t)− φ′c(x)

M0

∫
φ′c(x−X)F (x, t) , (6.3.24)

with the white noise term F (x, t) having the same correlation as given in section
6.2. The correlation function for the modified noise term F(x, t) is easily found to
be

〈F(x, t) F(x′, t′)〉 = 2Tε
[
δ(x− x′)− φ′c(x)φ

′
c(x

′)

M0

]
δ(t− t′) , (6.3.25)

= 2Tεδψ(x− x′)δ(t− t′) , (6.3.26)

where the δψ term represents a delta function in the subspace perpendicular to the
translation mode φ′c(x). Using this Langevin equation we can derive the following
Fokker-Planck equation for the ψ field

∂P (ψ, π; t)

∂t
=

∞∫
−∞

dx

{
−π δ

δψ
P (ψ, π; t)− δ

δπ

[(
ψxx − ψU ′′[φc]− επ

)
P (ψ, π; t)

]
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+Tε
δ2

δπ2
P (ψ, π; t)

}
. (6.3.27)

This equation has an equilibrium solution

P eq ≡ e−βHph , (6.3.28)

with Hph given by

Hph =
1

2
π2 +

1

2
ψ2
x +

1

2
ψ2U ′′[φc] . (6.3.29)

That this is an equilibrium solution is not too surprising as it is the term from
the total Hamiltonian which is clearly due to the phonons. This is in fact the
assumption made by WS [67] although to our knowledge they did not give a similar
justification.

6.3.4 Fokker-Planck Equation for the Kink Variables II.

With an equilibrium phonon distribution function (6.3.28) in hand we can now
proceed to derive the Fokker-Planck equation for P (X, p; t). Following the proce-
dure outlined in section 6.3.2 we substitute the ansatz in Eq. (6.3.22) into the full
field Fokker-Planck equation (6.3.11) and carry out the transformation to the kink
variables. Since this calculation is a bit tedious we include it in Appendix H from
which we obtain

e−βHph
∂P (X, p; t)

∂t

= e−βHph
{

(p+
∫
πψ′)

M0(1 + ξ/M0)2

δP (X, p; t)

δX

+ β
(p+

∫
πψ′)

M0(1 + ξ/M0)
P (X, p; t)

∫
dx φ′c

(
Φ′′ − U ′[Φ]

)
+ ε

δ

δp

[
(p+

∫
πψ′)P (X, p; t)

]
+
ε

β

(∫
Φ′2

) δ2

δp2
P (X, p; t)

}
, (6.3.30)

with Hph given by Eq. (6.3.29). In writing Eq. (6.3.30) we have omitted all terms
which have powers of temperature higher than T , again using the fact that the ψ
and π fields, which are assumed to be in equilibrium, are of the order

√
T . Higher

order terms are not relevant since the phonon equilibrium distribution derived in
the previous section is only approximate.

To obtain a Fokker-Planck equation which does not depend on the phonon
variables, we average over the ψ and π fields. Since Hph is quadratic in the both
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ψ and π, all odd terms in either of these fields average to zero leaving us with

∂P (X, p; t)

∂t
= − (1 + 3

〈ξ2〉
M2

0

)
p

M0

δP (X, p; t)

δX
+ ε

δ

δp
(pP (X, p; t))

+ M0
ε

β
(1 +

1

M2
0

〈ξ2〉) δ
2

δp2
P (X, p; t) . (6.3.31)

where here the angle brackets denote

〈f [ψ, π]〉 =

∫
DψDπ f [ψ, π]e−βHph∫

DψD πe−βHph
. (6.3.32)

Averages similar to those required in Eq. (6.3.31) have been carried out by
Miyashita and Maki [115].

In obtaining Eq. (6.3.31) we have made use of the fact that∫
φ′c

[
Φ′′ − U ′[Φ]

]
=

∫
φ′c

[
φ′′c + ψ′′ − U [φc]− ψU ′′[φc] +O[ψ2]

]
(6.3.33)

=
∫
φ′c

[
ψ′′ − ψU ′′[φc]

]
+O[ψ2] , (6.3.34)

=
∫ [
φ′cψ

′′ − ψ
d

dx
U ′[φc]

]
+O[ψ2] , (6.3.35)

=
∫ [
φ′cψ

′′ + ψ′U ′[φc]
]
+O[ψ2] , (6.3.36)

= O[ψ2] , (6.3.37)

where we have made repeated use of

U ′[φc] = φ′′c . (6.3.38)

Therefore the second term on the right-hand side of Eq. (6.3.27) is of order

T 2pP (X, p; t) . (6.3.39)

and has been neglected.
If we further neglect the averaged terms in Eq. (6.3.31), we obtain the

bivariate Fokker-Planck equation for a Newtonian particle [108] with momentum
p. If p were the momentum of the kink, Eq. (6.3.31) would immediately imply
that the kink behaves as a “regular” Brownian particle to lowest order. However,
the variable p represents the total momentum of the field (see section 3.2) and not
the kink momentum, that is

Ẋ =
p+

∫
πψ′

M0(1 + ξ/M0)2
. (6.3.40)
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As before this equation applies only to lowest order since it represents the sta-
tionary path, even so it does tell us that the kink momentum M0Ẋ and the total
momentum p differ by terms of order T , therefore one can interpret Eq. (6.3.31)
as stating that the kink behaves as a Brownian particle to lowest order. If we
include the averaged terms we see that they have the effect of adding temperature-
dependent corrections to the mass and diffusion constant. We have not explicitly
performed the functional integrals because it is not yet clear what additional cor-
rections must be included to account for the fact that p is not the kink momentum.

One of the possible approaches to avoid the complications introduced by the
fact that p is not the kink momentum is to use a different form of the canonical
transformation in which p more closely approximates the kink momentum. This
transformation was mentioned in section 3.2 and leads to the following relation
between p and Ẋ [116]

p = M0(1 + ξ/M0)
2Ẋ . (6.3.41)

Although this form for p still involves the field ψ (through ξ), it does not depend
on the momentum π. Compare this with the expression for p obtained from Eq.
(3.3.28),

p = M0(1 + ξ/M0)
2Ẋ −

∫
πψ′ . (6.3.42)

Clearly the difference is the addition of the momentum carried by the phonon field.
The factors of 1+ ξ/M0 which appear in both expressions represent a renormaliza-
tion of the kink mass due to the phonon field ψ. Since the transformation which
leads to Eq. (6.3.42) is also canonical, it can serve as a basis for our Fokker-Planck
equation. Efforts which utilize this transformation are currently underway.

6.3.5 Higher Order Terms

Now that we have a lowest order result for the kink distribution function, we can
continue to higher order. This involves writing a Fokker-Planck equation for the
phonons using the lowest-order kink distribution function in the ansatz. When this
equation is obtained we plan to calculate the time required to achieve equilibrium
and confirm our ansatz that the phonons equilibrate more quickly than the kink.
These calculations are currently in progress.

Another route to higher order terms would be to start with a phonon equi-
librium distribution function which is valid to higher order in temperature. The
rather obvious choice is the exact equilibrium distribution function itself

P eq
ph [ψ, π|X, p] = e−βH . (6.3.43)

Again making the ansatz

P [X, p, ψ, π] = P (X, p; t)P eq
ph [ψ, π|X, p] , (6.3.44)
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we easily derive the following equation for P(X,p;t):

e−βH
∂P (X, p; t)

∂t

= e−βH
{
− (p+

∫
πψ′)

M0(1 + ξ/M0)2

δP (X, p; t)

δX

+ ε
δ

δp

[
pP (X, p; t)

]
+
ε

β

(∫
Φ′2

) δ2

δp2
P (X, p; t)

}
, (6.3.45)

where we have made use of the fact that∫
dx Π0Φ

′ = p . (6.3.46)

Notice that this equation does not contain a term similar to the second term on
the right-hand side of Eq. (6.3.30), which we eventually showed was of order T 2.
This term does not occur because in using the exact equilibrium solution, much
cancellation occurs. Doing the functional averages over the phonon fields we obtain

∂P (X, p; t)

∂t
= − (1 + 3

〈ξ2〉
M2

0

)
p

M0

δP (X, p; t)

δX
+ εp

δ

δp
P (X, p; t)

+ M0
ε

β
(1 +

1

M2
0

〈ξ2〉) δ
2

δp2
P (X, p; t) . (6.3.47)

This is nearly identical with the result obtained in the previous section, the dif-
ference occuring in the second term in which the momentum derivative operates
only on the distribution function P (X, p; t) instead of on the product pP (X, p; t).
This results in an equation which is not a Fokker-Planck equation. Indeed the
function P (X, p; t) is no longer a probability distribution function since it is not
normalizable. To see this explicitly, note that since we used the exact equilibrium
solution in our ansatz, the “equilibrium” solution P (X, p;∞) must be unity, a fact
which is easily checked. Of course the entire distribution function P [X, p, ψ, π] is
normalizable and the integral of P [X, p, ψ, π] over X, p, ψ, π is conserved for all
time because it satisifies a Fokker-Planck equation, which is in divergence form.
Once again it would be useful to have a momentum variable p which represents the
kink momentum, so to that end the alternate form of the canonical transformation
should be implemented. Then one can derive an equation similar to Eq. (6.3.47)
and attempt to solve it via standard separation-of-variables techniques.

6.3.6 Constant Driving Force

So far we have considered only the undriven system in which we have found that
the kink will execute Brownian motion to lowest order. A physically more relevant



17

situation involves the inclusion of a constant driving force which will cause the
kink to move at some finite velocity, contributing to various transport quantities
such as mobility.

Denoting the strength of the constant driver by E0, the full field equation
becomes

Φtt − Φxx + U ′[Φ] = E0 − εΦt + F (x, t) , (6.3.48)

where as before the fluctuating force F (x, t) represents delta-function- correlated
white noise. The Fokker-Planck equation associated with this Langevin equation
is

∂P (Φ,Π0; t)

∂t

=

∞∫
−∞

dx

{
−Π0

δ

δΦ
P (Φ,Π0; t)−

δ

δΠ0

[(
Φxx − U ′[Φ] + E0 − εΠ0

)
P (Φ,Π0; t)

]

+ Tε
δ2

δΠ2
0

P (Φ,Π0; t)

}
. (6.3.49)

We would like to proceed as in the undriven case and derive a Fokker-Planck
equation for a reduced distribution function P (X, p; t) for the kink variables. The
first step is to find a steady-state (cf. equilibrium solution for the undriven case)
solution for Eq. (6.3.48). Formally e−βH with H given by

H =
1

2
Π2

0 +
1

2
Φ2
x + U [Φ]− E0Φ , (6.3.50)

is a solution to Eq. (6.3.48). However, this Hamiltonian is unbounded from below
due to the term linear in Φ and is therefore physically unacceptable. At this
point we realize that the addition of a constant force greatly modifies the problem
and that before we proceed, we should understand these modifications and their
implications.

To understand these some of these modifications, it is useful to refer once
again to the pendulum chain. For example, a constant torque E0 on the pendulum
chain will cause all of the pendula to attain a new equilibrium position Φ0 given
by

U ′[Φ0] = E0 . (6.3.51)

One of the obvious ways to account for this deviation is to use a nonzero ψ0 field.
A more subtle method would be to change the definition of what is meant by a
kink, a possibility which has already been examined in section 5.4. In either case,
one must also deal with infinite energy terms or for the finite system considered
below, terms which diverge with the length of the system. This divergence can be
removed by a suitable subtraction from the Hamiltonian.
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In addition to a constant deformation of the field, we can expect to see a
nonsymmetrical change in the kink waveform [102], that is the kink will achieve a
nonzero “polarization” [37]. This change in the kink profile will be well-localized
about the kink center and move with the velocity of the kink. Again this de-
formation could be included in the definition of the kink, or we could account
for it through the ψ0 field, however since the kink will be moving (either at or ap-
proaching a terminal velocity), ψ0 would have to depend on time which complicates
matters more.

It might seem that the matters discussed in the previous two paragraphs
are more relevant to the dynamics of a kink without the thermal force present.
However in writing a Fokker-Planck equation for the kink variables we will again
need to make an adiabatic ansatz in which we freeze the kink degrees of freedom
and postulate the equilibrium distribution function of the phonons. Since this dis-
tribution function depends on the configuration of the field, we need some detailed
knowledge of the (deformed) kink profile.

Another feature which requires closer attention in the driven case is the
question of boundary conditions. In the undriven case we glossed over this point
because the system is translationally invariant. In anticipation of dealing with
the added complication of the motion of a kink in a position-dependent potential
under the influence of thermal forces [117, 118, 119, 120, 121], we consider some
of the consequences of applying the proper boundary conditions. Before a specific
boundary condition is chosen, we must first realize that in order to properly account
for the correct number of degrees of freedom [75, 48], we must deal with a system
of finite length and take the thermodynamic limit at the end of the calculation.
The boundary condition which is most easily dealt with is the periodic one (mod
(2π)). Having a system of finite length subject to periodic boundary conditions
requires us to use the kink solutions [122, 123] and linearized phonons appropriate
to this system. The analytic solutions for the kink solutions on the finite line are
expressable in terms of Jacobi ellpitic functions [122] whereas the phonons can be
written in terms of theta functions [33].

One can obtain a physical picture of the periodic boundary conditions by
imagining the pendulum chain “bent” into a circle, connecting the first and last
pendula together. In traversing this circle the angular deviation of the pendula
changes smoothly from zero to 2π (=0) representing the kink. An alternate method
of viewing the periodic system is to consider a “kink lattice”. In this case we
imagine a long pendulum chain divided into cells of length l. Each cell contains a
kink, however this time the total angular deviation experienced in going from the
beiginning to the end of the kink can be less than 2π [124]. An additional feature
of this kink lattice approach is the presence of two phonon bands separated by
a gap [124]. The first of these bands represents vibrations of the kink lattice
itself, the zero frequency mode again representing a rigid translation of the entire
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lattice. The second band is similar to the phonons described in section 4.1. In
the thermodynamic limit this first band becomes negligible and we approach the
dispersion relation which applies to the infinite system.

The stage is now set for carrying out the calculations begun in this chapter
to higher order. Not only can the temperature dependent mass and diffusion
coefficients be calculated, but the question of the approach to equilibrium can now
be attacked. In addition, many of the added difficulties which enter the problem
when a constant driver is added have been examined and possible solutions have
been considered. As a final step, one might try to use the variable transformation
to study the more general problem of a Boltzmann equation.
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