
Chapter 7

Kink-Antikink Collisions in φ4

So far we have dealt with the use of a single collective coordinate which represents
the center of mass of a Klein-Gordon kink. Because we have a canonical transfor-
mation from the original field variables to the “kink” variables, this method is on
very firm ground and therefore is expected to yield reasonable results. However,
the rigor lent by this transformation is also a weakness since one cannot expect to
find the appropriate canonical transformation for an arbitrary system (assuming
one even exists). Since this canonical transformation is based on the physically
reasonable decomposition

Φ(x, t) = φc(x−X(t)) + χ(x−X(t), t) ,

one would hope that similar physically reasonable ansätze which do not necessarily
represent canonical transformations would also prove useful. In order to explore
this possibility, we consider in this chapter the use of two collective coordinates
to model the kink-antikink collisions in φ4 field theory. We begin by reviewing
the behavior observed in the numerical simulation of the PDE. In section 7.2 we
outline collective coordinate approaches which have been used and introduce an
ansatz based on two collective coordinates. Section 7.3 contains plots and limiting
analytic forms for the coordinate-dependent masses and potential which one ob-
tains from the averaged Lagrangian. The equations of motion are presented and
their numerical solution discussed in section 7.4. These solutions of the equations
indicate that the ansatz breaks down when the two kinks collide. The limiting case
in which the kinks are very close is examined in section 7.5 in which we find that
one of the coordinates undergoes very rapid changes as the separation between the
kinks goes to zero. A new ansatz based on the original one but which includes
“relativistic” terms is proposed in section 7.6. Simulations of the equations of
motion which result from this ansatz are currently being carried out.
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7.1 Observed Phenomena in Numerical Simula-

tions

As mentioned in the introduction, the φ4 system is not integrable but it does
possess exact kink(+) and antikink(-) solutions

φK(x) = ± tanh
(x− x0)

m
√

2
. (7.1.1)

Since the φ4 system is not integrable but possesses solitary wave solutions (not
solitons), it of interest to study the interaction between two such solitary waves.
Several investigators [125, 126, 127, 128, 129, 130, 131, 132] have studied the colli-
sion of a kink and antikink by the direct numerical integration of the PDE. Initial
studies showed that when the kink velocities were above some critical value vc, the
kinks scattered off of one another inelastically transferring energy to other modes
of the system such as radiation (“phonons”). For velocities less than vc the kinks
were found to form a bound state, again transferring some energy into the radi-
ation degrees of freedom. Further investigation showed that for certain velocity
intervals vi < v < vj < vc (see Figure 7.1) the kinks did not form a bound state
but scattered off to ±∞. Similar phenomena have been observed in other nonin-
tegrable systems such as the parametrically modified sine-Gordon [50] and double
sine-Gordon [133] systems. These “resonance windows” have been quantitatively
explained by Campbell et al. [15] in terms of an exchange of energy between the
kink translational energy and a localized mode known as the “shape mode”, which
can be thought of as representing a modification of the kink solution. The basic
idea is that when the kinks first collide, there is an energy transfer into the shape
mode. The kinks then move apart, but not having enough energy to overcome the
attractive potential which exists between them (i.e. some energy was given to the
shape mode), they fall back toward one another. When they collide again, the
energy in the shape mode can be transferred back to the translational motion if
the time between the collisions obeys the following resonance condition:

ω2T = δ + 2nπ ,

where ω2 =
√

3/2 is the frequency of the shape mode. Such a transfer of energy
allows the kink and antikink to overcome the attractive potential and escape to in-
finity. Using these ideas Campbell et al. have been able to predict the bounds vi of
the resonance windows which are in good agreement with the results obtained from
the numerical simulations. The analysis, however treats the collision as a “black
box” and does not provide any details of the collision as do the PDE simulations.
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Figure 7.1: Results of a numerical simulation showing the final kink velocity after

a φ4 KK̄ collision as a function of the initial kink velocity. A final velocity of zero

indicates the formation of a bound state. Taken from Ref. 15 with the permission

of the authors.
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7.2 Collective Coordinate Approaches

To gain an understanding of the collision process without solving the PDE, several
collective coordinate methods have been put forth to study the KK̄ collisions.
Although Aubry [130] was the first to observe the resonance structure, Kudryavt-
sev [125] was the first to implement coordinates which showed that the effective
potential between the kink and antikink was attractive. In another early study,
Sugiyama [131] introduced collective coordinates which represent the center of
mass of the kinks and the amplitudes of the shape mode and radiation degrees
of freedom. His analysis was purely analytic, producing an attractive potential
in which the kinks moved and a solution for the shape mode coordinate which
exhibited harmonic oscillations.

A collective coordinate ansatz very similar to that used by Sugiyama was
introduced by Jeyadev and Schrieffer [134]. In the notation established in section
3.1 the ansatz has the form

ΦA(x, t) = 1 + tanh y− − tanh y+

+ A(t)

[
fb,2(y−) cos

ωb,2(t− βx)√
1− β2

− fb,2(y+) cos
ωb,2(t + βx)√

1− β2

]

+
∑
k

Bk(t)

[
fk(y−) cos

ωk(t− βx)√
1− β2

− fk(y+) cos
ωk(t + βx)√

1− β2

]
(7.2.1)

with the definitions

y± =
x± α(t)√
2
√

1− β2
, β = α̇ . (7.2.2)

Substitution of this ansatz into the Lagrangian density and integration over space
yields a Lagrangian which depends on the collective coordinates α(t), A(t), Bk(t)
and their time derivatives. The resulting equations of motion are quite complex
when all of the relativistic and phonon terms are included and therefore only the
lowest order terms in the velocity were included in the simulations, the phonon
terms being dropped entirely. The numerical results based on this model showed
that the kinks attained relativistic velocities (in fact β became > 1). When this
occurred the amplitude of the shape mode also became large, which in turn caused
the velocity to diverge.

A slightly different ansatz

ΦA(x, t) =
m√
λ

{
1− tanh

[my0(x− x0)√
2

]
+ tanh

[my0(x + x0)√
2

]}
. (7.2.3)

was put forth by Campbell et al. [15]in their original work describing the PDE
simulations . This ansatz represents a kink-antikink pair moving in opposite di-
rections according to the center of mass variable x0(t) (see Figure 7.2). Like the
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Figure 7.2: Schematic representation of the ansatz in Eq. (7.2.3)
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previous ansätze, there is a collective coordinate x0 which describes the center of
mass motion of the kinks. The y0 coordinate takes the place of the shape mode
contribution by allowing the width of the kinks (1/y0) to vary as a function of time.
The x0 collective coordinate is much like the X coordinate used in the previous
chapter in that it is a result of the translational invariance of the original equations.
The y0 coordinate, however appears merely as a parameter in the ansatz. Equation
(7.1.1) is a solution of the field equations only for y0 = 1, x0 being able to take on
any value. Therefore the y0 coordinate has been termed a “parametric collective
coordinate” [42, 15] while the x0 coordinate is a “linear collective coordinate”. No
matter what the values of x0 and y0, the ansatz given in Eq. (7.2.3) is not an
exact solution of the original field equations and it does not represent a canonical
transformation to a new set of variables; however in view of the explanation of the
resonance windows given by Campbell et al., it is certainly a reasonable choice.

Proceeding along the same lines as Jeyadev and Schrieffer [134] , we substi-
tute this ansatz into the Lagrangian density

L =
1

2

(∂tΦA

∂t

)2
− 1

2

(∂xΦA

∂t

)2
+

λ

4
(Φ2

A −
m2

λ
)2 , (7.2.4)

and integrate over x, yielding a Lagrangian

L(x0, ẋ0, y0, ẏ0) =
1

2
m1(x0, y0)ẋ

2
0 + m2(x0, y0)ẋ0ẏ0 +

1

2
m3(x0, y0)ẏ

2
0

− V (x0, y0) , (7.2.5)

where the expressions for the masses and potentials along with some useful limits
are given in Appendix I. One of the interesting features of this Lagrangian and the
associated Hamiltonian is the appearance of coordinate dependent masses. Since
the masses depend on the coordinates, we cannot use the usual potential energy
arguments to give us an idea of what the solution is. One might ask whether one can
somehow make a transformation to a new set of variables x′0, y

′
0 in terms of which

the masses are coordinate independent. Such a procedure is available for systems
with only one coordinate [135] and merely requires finding the transformation to
a new variable q(q′) such that

m(q)q̇2 = m̃ ˙̃q
2

. (7.2.6)

This equation is easily integrated to yield

q̃(q)− q̃(q0) =

q∫
q0

dq′

√
m(q′)

m̃
. (7.2.7)

The analogous procedure for our system involves first diagonalizing the kinetic
energy terms in Eq. (7.2.5), followed by the integration of a coupled set of ODEs.
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Since we are not assured of finding a solution of these equations (even numeri-
cally), this method shows little promise. Since we have to deal with the coordinate
dependent masses and potentials, it is helpful to become acquainted with this
dependence.

7.3 The Potential V (x0, y0) and Masses mi(x0, y0)

As mentioned above, the effective mutual potential experienced by the kink and
antikink is attractive as is shown in Figure 7.3. One might argue that since the
masses depend on the coordinates, interpreting the effective potential as attractive
is not valid; however one can always restrict the coordinates to a small enough range
so that the masses are essentially constant. The linear behavior in the potential
for values of x0 < 0 represent the fact that the kinks cannot pass through one
another to infinity. One can understand this by considering the field amplitude for
a configuration in which the kinks have passed through one another (see Figure
7.2). In the segment of length L, the field amplitude is a constant φ0. The energy
content of this segment is (φ2

0 − 1)2L which diverges linearly with L as shown in
Figure 7.3.

The masses m1(x0, y0), m2(x0, y0) and m3(x0, y0) are plotted in Figures 7.4-
7.6. (It should be noted that in all of the plots, the minimum value of y0 plotted is
not 0. The scale begins at y0 = 0 because the graphics package used automatically
scales the plots so that the numbers on the scale are “round” numbers.) For large
x0, m1 approaches a constant value which is easily shown to be (see Appendix I)

m1(x0, y0) −→
8

3

√
2m3y0/λ , (7.3.1)

which is twice the mass of a single kink. Figure 7.5 shows that for small x0, m2

vanishes linearly while m3 vanishes quadratically. One of the consequences of these
vanishing masses is that for x0 = 0 the kinetic energy is entirely carried by the
translation of the kinks. More importantly, we see from the Lagrangian that for
m2 and m3 equal zero, the value of ẏ0 is arbitrary, a fact that will give rise to
numerical trouble when the equations of motion are integrated. Finally we note
that the mass m3 shows a divergence as the y0 coordinate approaches zero. All of
the limiting properties of the potential and masses are summarized in Table 7.1.

From the analytic expressions for the masses and potentials given in Ap-
pendix I one might expect that as either the x0 or y0 coordinates tends to zero,
these quantities might not be computed accurately since both the numerator and
denominator tend to zero. To avoid such problems the limits of the potentials
and masses were taken analytically. With the aide of the symbolic manipulation
program MACSYMA [136] the Taylor series were taken up to and including terms
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Figure 7.3: The effective potential V (x0, y0).
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Figure 7.4: The mass m1(x0, y0).
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Figure 7.5: The mass m2(x0, y0).
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Figure 7.6: The mass m3(x0, y0).
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z0 → 0 z0 →∞

V1(x0, y0)
8
√

2m5x2
0y3

0

15λ
2
√

2m3y0

3λ

V2(x0, y0)
8
√

2m5x2
0y0

3λ
2
√

2m3

3λy0

m1(x0, y0)
8
√

2m3y0

3λ

[
1− 2m2x2

0y2
0

5

]
8
√

2m3y0

3λ

m2(x0, y0)
8
√

2m3x0

3λ

[
1
2
− 2m2x2

0y2
0

5

]
0

m3(x0, y0)
8π2

√
2m3x2

0

45λy0

8m√
2λy3

0

1
3

(
π2

3
− 1

)
Table 7.1: Limiting values for the potentials and masses for z0 approaching 0 and

∞. The total potential V is the sum of V1 and V2. Analytic expressions for V1 and

V2 are given in Appendix I.

on the order of z10
0 with z0 = mx0y0/

√
2. To assure a smooth transition from the

analytic to Taylor series expressions both quantities were computed for a variety of
small values of z0. For z0 of the order of 0.01, the expressions gave the same values
to at least 9 significant digits. As a further check on the analytic forms given in
Appendix I, the integral expressions were numerically evaluated. Again we found
the analytic and numerically integrated values of the masses and potential agree
to at least 9 significant digits.

7.4 Equations of Motion

Application of the Euler-Lagrange method yields the following equations of motion
for x0 and y0:

m1ẍ0 + m2ÿ0 +
1

2

∂m1

∂x0

ẋ2
0

+
∂m1

∂y0

ẋ0ẏ0 +
∂m2

∂y0

ẏ2
0 −

1

2

∂m3

∂x0

ẏ2
0 +

∂V

∂x0

= 0 , (7.4.1)

m3ÿ0 + m2ẍ0 +
1

2

∂m3

∂y0

ẏ2
0
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Figure 7.7: Position (solid) and velocity (dashed) for a “wobbling kink” solution.

+
∂m3

∂x0

ẋ0ẏ0 +
∂m2

∂x0

ẋ2
0 −

1

2

∂m1

∂x0

ẋ2
0 +

∂V

∂y0

= 0 . (7.4.2)

In general this set of coupled equations must be solved numerically; however, an
analytic solution can be found in the limiting case in which x0 approaches ∞.
Guided by the numerical integration of the PDE, one is led to search for a solution
in which the velocity of the kinks oscillates about a constant value. Such a solution
has been obtained by Campbell [137], with the period of oscillation given by

T = 2π

√(π2

6
− 1

)(
1− v2

f

)
≈ 5.04

√
1− v2

f , (7.4.3)

where vf is the mean of the final velocity. This analytic result proves to be a good
check of the numerical integrator. In Figure 7.7 we present results of the numerical
integration of Eqs. (7.4.1-2) for initial conditions

x0 = 20 , ẋ0 = 0.2 , y0 = 1 , ẏ0 = 0 . (7.4.4)

Making a rough measurement from this graph we find that the oscillation period
is 4.94 compared with 4.94 as computed from Eq. (7.4.3) with vf approximated
by 0.196.
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In the above example we started the kink and antikink moving away from
each other so that a comparison could be made with analytic results (initial con-
ditions in which the kink and antikink collided yield simliar results). Figure 7.8
shows the integrated values of the variables and their time derivatives for initial
conditions for which the kink and antikink collide. Initially the kink and antikink
travel toward each other with initial velocities of -0.2 and +0.2 respectively. When
the kink and antikink are approximately 3 units apart they begin to accelerate
towards one another under the influence of their mutually attractive potential. At
x0 the the kinks very abruptly bounce off of one another after which they move
apart, their velocities experiencing small oscillations which represent a transfer
of energy into the oscillating width (shape mode) of the kinks (see Figure 7.8).
From Figure 7.1 we see that for the initial velocity of -0.2, the kinks should indeed
eventually scatter to ±∞; however the numerical simulations of the PDE indicate
that the kink and antikink actually pass through one another (x0 < 0) before they
turn around and move off to ±∞. Furthermore, before they separate to ±∞, they
should experience a second collision in which the energy given to the shape mode
oscillation is returned to the translational motion allowing them to escape. This
asumes that the ansatz will capture all of the details of the collision which one
cannot expect since we allow for no radiation degrees of freedom. However, one
would hope to be able to capture the resonance windows. Additional simulations
with initial velocities which are not in the windows, that is, initial velocities for
which we should see a bound state formed, also show this type of hard bounce.
Finally in Figure 7.8 we see the y0 coordinate is well behaved until it increases
rapidly when x0 approaches 0. The oscillations which occur after this sharp spike
again reflect the sharing of energy between the translational kinetic energy and
the energy associated with the changing kink width.

In Figure 7.9 we examine more closely the region for which the “hard
bounce” seen in Figure 7.8 occurs. The initial conditions used for this run cor-
respond to the values of the variables and their derivatives at t = 42 in Figure
7.8. Here we see that the hard bounce at x0 = 0 in fact occurs smoothly on a
smaller time scale. Examination of the plots of the y0 coordinate and its derivative
on this finer time scale are further causes of concern since a y0 value of 40 rep-
resents extremely sharp kinks, another feature which is not observed in the PDE
simulations. Another interesting feature of these plots is that the kink velocities
approach -1 and then turn around, echoing the results of Jeyadev and Schrieffer
[134]. The fact that the velocity gets so close to its relativistic limit of -1 seems to
indicate that a “relativistic” treatment of the problem is in order. This possibility
is outlined in section 7.6.

Given these rather unexpected and somewhat unphysical results, one im-
mediately questions the accuracy of the codes used to integrate the equations. We
have already mentioned in section 7.3 that extreme care has been taken in the eval-
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Figure 7.8: The kink position x0 (solid) and inverse width y0 (solid) along with

their time derivatives (dashed) as a function of time.
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Figure 7.9: Blow up of the “hard bounce” region of Figure 7.8
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Figure 7.10: Hamiltonian vs. time during the bounce.

uation of the potential, masses, and their derivatives, and therefore they can be
ruled out as a possible problem. Next one questions the accuracy of the numerical
integrator used. Since a Hamiltonian exists for this problem, namely

H(x0, ẋ0, y0, ẏ0) =
1

2
m1(x0, y0)ẋ

2
0 + m2(x0, y0)ẋ0ẏ0 +

1

2
m3(x0, y0)ẏ

2
0

+ V (x0, y0) , (7.4.5)

we can monitor it as a function of time as a check on the numerical integrator. In
Figure 7.10 we plot the Hamiltonian as a function of time corresponding to the
variables plotted in Figure 7.9. From this plot we see that the Hamiltonian is indeed
quite well conserved, although there is obviously something drastic happening when
x0 = 0. An even greater accuracy, up to about 1 part in 10−9 can be achieved
by decreasing the error tolerances of the numerical integrator. The fact that the
Hamiltonian is conserved so well, coupled with the fact that the code accurately
reproduces the oscillation period, indicates that the equations have been coded
properly and that the integrator is working. This leads us to consider what features
of the ODEs could cause such behavior, or more importantly, to find the root of
the problem in the original ansatz.
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7.5 Limiting Analysis: x0 → 0

Since the problem occurs for small values of the x0 coordinate, it is useful to
examine the equations of motion in this limiting case. Using the results from
Table 7.1, one arrives at the following equations after a bit of algebra:

ẍ0 ≈ x0

[
Dm2y2

0(ẋ
2
0 − 1) +

C

y2
0

− 2m2

]
+ O(x2

0) , (7.5.1)

x0ÿ0 ≈ −2ẋ0ẏ0 + Ey3
0x0(ẋ

2
0 − 1) + O(x2

0) , (7.5.2)

with the constants C, D and E given by

C =
π2

15
≈ 0.65 (7.5.3)

D =
2

5

(
4C − 3

4C − 1

)
≈ −0.09 (7.5.4)

E =
2

5
(C − .25)−1 ≈ 0.98 . (7.5.5)

Since these equations are valid only for small x0, one cannot divide the equation
for y0 by x0. The numerical integrator used to solve the equations of motion is an
algebraic-differential equation solver, which means that the form for the y0 equation
given in Eq. (7.5.2) is what is used in the code. Even though the integrator can
handle such a potential singularity, it is clear from Eq. (7.5.2) that we can expect
some very rapid changes in the y0 coordinate as x0 → 0.

Another interesting feature of the limiting equations is the appearance of
the factors ẋ2

0 − 1. Recall that the velocity in Figure 7.9 reached a minimum
value of -1 before turning around. Since this behavior has been observed for initial
velocities other than that shown in Figure 7.9, one is led to look for zeroes of the
right-hand side of Eq. (7.5.1) ( zeroes in ẍ0 correspond to “turning points” in ẋ0).
Such a turning point would occur for ẋ2

0 = 1 if

C

y2
0

= 2m2 . (7.5.6)

In the simulations we have taken m = λ = 1 (these choices were made so that
direct comparisons could be made with the PDE simulations [15]), so Eq. (7.5.6)
requires that y0 ≈ 0.57, a condition which does not hold in Figure 7.9 and in other
simulations. Presently an effort is being made to search for zeroes of the right-
hand side of the exact x0 equation to see if a turning point for ẋ2

0 = 1 is a generic
feature.

From the limiting forms of the equations of motion, we see that there must
be some very rapid behavior near x0 = 0. This fact is further supported by an
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examination of the Hamiltonian surface on which the motion must occur. The
Hamiltonian surface is a three dimensional surface embedded in the four dimen-
sional state space (x0, ẋ0, y0, ẏ0). The most convenient method of examining such
a surface is to fix one of the coordinates and examine a two dimensional section of
the three dimensional surface. To compute values on this surface, it is easiest to
solve for either ẋ0 or ẏ0 using the quadratic formula which yields

ẋ0(x0, y0, ẏ0; H0) = −m2ẏ0 ±
1

m2

√√√√m2
2ẏ

2
0 − 2m1

(
1

2
m3ẏ2

0 + V −H0

)
, (7.5.7)

ẏ0(x0, y0, ẋ0; H0) =
−m2

m3

ẋ0 ±
1

m3

√√√√m2
2ẋ

2
0 − 2m3

(
1

2
m1ẋ2

0 + V −H0

)
.(7.5.8)

Using the limiting forms given in Table 7.1 we can compute the values that ẏ0

must take as x0 → 0:

ẏ0(x0, y0, ẋ0; H0)→
αy0

x0

[
−ẋ0 ±

√√√√ẋ2
0 − β

(
m1ẋ2

0

2
+ V −H0

)]
, (7.5.9)

with α and β given by

α =
15

2π2
, (7.5.10)

β =
π2

5
√

2m3y0

. (7.5.11)

This limiting form for ẏ0 tells us that for finite ẋ0, unless

1

2
m1ẋ

2
0 + V −H0 = 0 , (7.5.12)

ẏ0 will diverge as x0 approaches 0. If Eq. (7.5.12) is satisfied, we find that ẏ0 is
zero. This type of behavior in ẏ0 is confirmed in Figure 7.9. If we plot the values
of ẏ0 as computed from the exact quadratic formula given in Eq. (7.5.8) we find
similar behavior. Figure 7.11 shows plots of these ẏ0 values for fixed ẋ0. Plots
for different values of ẋ0 have similar features. Since the coordinates must evolve
such that they remain on this Hamiltonian surface (also verified by the plots of
the Hamiltonian such as Figure 7.10), we must conclude that as x0 approaches
zero, the ẏ0 parameter must take on very large values. This in turn causes y0 to
take on large values which corresponds to a very sharp kink, much sharper than
is physically reasonable. Therefore it appears that the ansatz in Eq. (7.2.3) is
not sufficient to capture the observed behavior. Two possible deficiences of the
ansatz are that it does not include any radiation degrees of freedom and that it
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Figure 7.11: A two-dimensional Hamiltonian section for fixed ẋ0 = −0.9.
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does not include relativistic terms. Since the actual simulations showed that for
small initial velocities very little energy was carried via emission of radiation, it
would seem that the relativistic corrections are at the root of the problem. This
is further supported by the fact that in all of the simulations of the ODEs, the
velocities attained were relativistic. In addition we can look at the values of ẋ0

allowed by the Hamiltonian. In Figure 7.12 we plot the Hamiltonian section for
fixed y0 = 1. Here we see that all of the velocities for x0 near zero are indeed close
to -1. What is even more striking is the fact that the velocity never exceeds -1,
but turns around just before the limiting velocity is attained.

7.6 A “Relativistic” Ansatz

Since the original Lagrangian is Lorentz invariant, the boosted kink

tanh
[ m(x + x0)√

2
√

1− ẋ2
0

]
, (7.6.1)

is a solution to the equations of motion. This prompts one to modify the ansatz
given in Eq. (7.2.3) to include the relativistic “γ” factor

ΦA(x, t) =
m√
λ

{
1− tanh

[my0γ(x− x0)√
2

]
+ tanh

[my0γ(x + x0)√
2

]}
, (7.6.2)

with γ given by

γ ≡ 1√
1− ẋ2

0

. (7.6.3)

By including the factor of γ we ensure that the width of the kink and antikink
will decrease as the velocity increases. This may in fact take the place of the y0

parameter, however we shall keep both coordinates initially to ensure the greatest
flexibility.

Again we insert this ansatz into the expression for the Lagrangian density
and integrate over space to obtain an effective Lagrangian

L(x0, ẋ0, ẍ0, y0, ẏ0) = γ2

[
1

2
m̃1(x0, y0)ẋ

2
0 + m̃2(x0, y0)ẋ0ẏ0 +

1

2
m̃3(x0, y0)ẏ

2
0

]

+
m4
√

2

2λ

{
4γẋ0ẍ0

m3y2
0

[
2ẏ0 + γ2y0ẋ0ẍ0

]
w3(z0) +

2γ3x0y0ẋ
2
0ẍ0

m
w3(z0)

}
− γ2Ṽ1(x0, y0)− Ṽ2(x0, y0) , (7.6.4)

where

m̃i ≡ mi(x0, γy0) , Ṽi ≡ Vi(x0, γy0) , (7.6.5)
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Figure 7.12: A two dimensional Hamiltonian section for fixed y0 = 1.
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and the expressions for the functions wi(z0) are given in Appendix I. Since this
effective Lagrangian depends on the second time derivative of x0, one must use
second order variational methods [138, 139] to obtain the Euler-Lagrange equations
of motions. Since the Lagrangian does not depend of the second time derivative
of y0, the standard Euler-Lagrange equation applies. The equation for x0 is [140]

d2

dt2
∂L

∂ẍ0

− d

dt

∂L

∂ẋ0

+
∂L

∂x0

= 0 . (7.6.6)

Due to the additional terms in the Lagrangian and the equation of motion for
x0, the resulting set of coupled equations for x0 and y0 are extremely long and
complex. Presently these equations are being derived and coded.

Although no results are yet available for the set of equations which result
from carrying out the calculations in Eq. (7.6.6), the data in the previous sec-
tions indicates that a “relativistic” approach as outlined has some promise. The
failure of the intuitive ansatz used in the previous sections indicates that either
the relativistic corrections are needed or that a more sophisticated ansatz is re-
quired. Perhaps one needs to include the phonon degrees of freedom to achieve
the quantitative agreement sought.
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