
Chapter 1

Introduction

In the past 20 years the study of nonlinear systems has experienced a large amount
of attention [1]. Scientists in many branches have been coming to grips with the
fact that the time-honored method of linearizing any nonlinearities that occur in
their equations omits phenomena which are of great importance. At least two areas
of research have emerged which account for these nonlinearities from the beginning.
One of these areas has been termed Dynamical Systems [2, 3] which is the study
of discrete maps and/or low dimensional sets of ordinary differential equations
(ODEs). So far this branch of research has led to many interesting studies of
turbulence, chaos, fractals, etc. Another branch which has received a great deal of
attention is that of Nonlinear Waves [4, 5]. Here, the existence of special solitary
wave solutions, that is, localized solutions which depend on x and t only through
the argument x − vt, has indeed had a great impact on the scientific community.
Of particular interest is a special type of solitary wave called a soliton which has
the additional property that its shape and velocity are preserved asymptotically
upon collisions with other solitary waves [6]. This is a familiar situation when
one is dealing with a linear dispersionless system such as the wave equation in a
dispersionless medium, however the addition of dispersion or nonlinearity tends
to cause the shape of a pulse to spread or sharpen, respectively. It is therefore
somewhat remarkable that when both dispersion and nonlinearities are present “in
the correct proportions” that the spreading and sharpening exactly cancel, giving
rise to solitons.

The first published observation of a solitary wave was made in 1834 by
John Scott-Russell in his now famous report [7] of his chase of a “Wave of Trans-
lation” along a shallow canal. Since then, these waves have been produced in
the laboratory and their properties investigated. In addition, the mathematical
models which have solitary waves as solutions received much attention. The first
evidence that such models could have soliton solutions was given by Perring and
Skyrme [8] in 1962 in their numerical investigation of the sine-Gordon (SG) equa-
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tion which indicated that after colliding, two of these solitary waves emerged with
the same shape and velocity that they had long before they interacted. In 1965,
Zabusky and Kruskal published results of a similar numerical investigation [9], this
time using the Korteweg-deVries (KdV) model. These simulations led to analytic
multi-soliton solutions which described the collisions. Soon an entire hierarchy of
solitons was produced with the help of Bäcklund transformations [10] which create
an “n-humped” solution to an “n+ 1-humped” solution. Further work involving a
technique called the Inverse Scattering Transform [11] showed that for the infinite
line, one could actually find action-angle variables for the sine-Gordon and KdV
models. Soon other integrable models including the nonlinear Schrödinger equa-
tion [12], Boussinesq [13] , modified KdV [14], etc. were discovered, adding to the
set of evolution equations which yield solitons. In addition to the growing list of
integrable systems which support N-soliton solutions, nonintegrable models were
also found in which solitary waves exist and have nearly elastic collisions [15]. One
of the most well known nonintegrable models is the φ4 theory. In this case, one
does have an analytic form for a solitary wave, however one cannot use the beau-
tiful machinery of Bäcklund transformations or the Inverse Scattering Transform
methods to generate and/or study soliton solutions. Although this removes one of
the only nonperturbative tools for investigating solitary waves, it has not stopped
efforts as is evidenced by the large number of applications found for nonintegrable
as well as integrable models.

It is of course the applications of these models which are of interest to
the physicist. Scott-Russell’s observation of a solitary wave in water was the
first study of a soliton-bearing physical system. Since then, solitary waves have
found their way into more modern applications such as Langmuir waves in plasmas
[16], Josephson junctions [17], quasi-one-dimensional magnets [18], charge-density-
waves [19] and dislocations [20] to name a few. Not only are solitons present in
these samples, but they can also contribute strongly to such processes as conduc-
tion, photoabsorption, magnetization, etc. In fact there are examples in which the
normal mechanisms which lead to the above physical processes are for some reason
inhibited and the conduction for example is mainly due to the motion of solitons.

There is perhaps there is no better illustration of this than the Josephson
junction in which quanta of flux called “fluxons” are observed to propagate along
the insulating barrier separating the two superconducting strips [21, 22, 23, 24, 25,
26]. The standard model which approximately describes the phase difference across
a Josephson junction is the sine-Gordon equation [27]. To more closely mimic the
actual physical situation, additional terms representing driving bias current and
dissipation are added to the sine-Gordon equation. Since the resulting equations
are not exactly solvable, one must develop perturbation schemes to obtain approx-
imate solutions. Several such schemes have been proposed in recent years, not
only for the sine-Gordon equation, but for many of the nonlinear wave equations
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mentioned above.
Many of these perturbation theories are based on the fact that although

one cannot obtain an exact solution merely by a specification of the motion of the
solitary waves, such a description can often provide a good first approximation.
This situation is familiar in the study of nonlinear systems and is not confined to
solitary wave bearing systems. Consider, for example, the flow of a viscous fluid
in which vortices are present. To the extent that the Navier-Stokes equation de-
scribes this system, one can obtain an “exact” solution by solving it. However, this
involves the solution of a three-dimensional partial differential equation (infinite-
dimensional system of ODEs). An approximate solution can often be obtained if
one concentrates on the motion of the vortices themselves. In this way one can
achieve a drastic reduction in the dimensionality of the system of ODEs. Instead
of solving the Navier-Stokes equation, one can obtain an approximate solution by
studying the motion of a few extended particles (vortices) whose interactions can
be characterized by an attractive or repulsive potential. A similar situation occurs
in the study of shock wave propagation in which one identifies a shock front and
focuses attention on the front itself instead of the entire flow field.

This type of analysis has proved fruitful in nonlinear systems which support
solitary wave solutions. The systems to which we shall confine our attention to
are those which have “kink solitary wave” solutions, that is a system in which
one or more of the quantities, such as the spin orientation in a ferromagnetic
domain wall, undergoes a smooth change from one value to another. In both
experments and numerical simulations it has been observed that the motion of
these kinks dominates to the point that in a first approximation, the entire system
is describable by merely prescribing the positions and velocities of these modes
as a function of time. It is therefore quite natural to attempt to describe such
systems by assigning a position coordinate to the solitary wave and derive equations
which describe the evolution of such “collective coordinates” and/or interactions
between these coordinates. For the systems studied in this work, this approach is
particularly rewarding as we find that the collective coordinate which describes the
motion of a kink obeys Newtonian dynamics. That is not to say that these kinks
behave as point Newtonian particles. Rather, the extended nature of these normal
modes gives these “particles” extra “degrees of freedom” such as shape oscillation.

Recall that the motion of these normal modes describes the system only
to a first approximation. Often one finds that the deviation between this first
approximation and the actual behavior consists of small fluctuations about the
nonlinear modes. Such fluctuations, termed “phonons”, must also be accounted for
if a more complete description of the system is to be obtained. Not only must the
generation of such phonons be described, but in addition one must also account for
any effect that the phonons may have back on the motion of the kinks themselves.
The perturbation theory developed in Chapter 3 takes all such considerations into
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account. The kink position is regarded as a collective coordinate and is found to
obey a Newtonian equation of motion. To a first approximation, one can describe
the entire system by an effective potential in which the kink moves. To obtain
corrections to this motion one must first compute the phonon field generated, a
task accomplished by solving a partial differential equation satisified by the phonon
field. This field in turn enters into the second-order equation of motion for the
kink position, indicating that the emitted phonons do indeed have an effect on the
motion of the kink.

In addition to influencing the motion of the kink and describing the emission
of phonons, the phonon field can also account for a temporary or permanent shape
change of the kink. In the examples presented in Chapter 5, both features of the
phonon field are illustrated. In one example we find that the kink experiences a
temporary shape change as it passes through a localized perturbing influence. In
addition to this temporary change, the interaction produces some phonons. The
effect of these phonons on the kink motion is to cause the velocity of the kink
to oscillate with small amplitude about the final velocity which is slightly below
the initial velocity. This process again illustrates the fact that the kink is an
extended, deformable particle. The phonon degrees of freedom allow for a transfer
of energy between the kink translational motion and the other degrees of freedom.
This interaction is one of the most interesting aspects of the present perturbation
theory.

One of the perturbations for which the theory of Chapter 3 is not well-suited
concerns the addition of a fluctuating force plus a phenomenological damping term
as occurs in kink-bearing systems at finite temperature. Motivated by studies
of a single particle under the influence of a fluctuating forces and damping, we
apply both Langevin and Fokker-Planck methods to analyze the stochastic kink
dynamics in Chapter 6. The results of these calculations echo the results of the
deterministic perturbation theory of Chapter 3, namely to lowest order the kink
behaves as an ordinary (Brownian) particle. The effect of the phonons is to add
temperature dependent corrections to the mass and diffusion constant. Much of
the analysis in Chapter 6 describes formal work which is needed to complete the
detailed calculations which are required for the higher order corrections.

All of the work mentioned above is based on a canonical transformation
to a set of “kink variables” which represent the kink position and the momentum
conjugate to the kink position. The existence of such a transformation places the
entire perturbation theory on a very firm foundation. However, one cannot always
expect to find such a canonical transformation. Indeed, one would hope that such
a transformation is not necessary in order to obtain an accurate description of
the system. Rather, one would like to identify the relevant collective coordinates
from the actual physical phenomena or numerical simulations. More precisely, one
would like to be able to make a simple ansatz for the various fields (such as the



5

spin) which is based on these collective coordinates. Such a collective-coordinate
ansatz is applied to kink-antikink collisions in phi-4 field theory in Chapter 7.
Results indicate that the most obvious use of the collective coordinates does not
capture the behavior found in the simulations of the PDE. An alternate ansatz
which includes “relativistic” effects is proposed and briefly discussed.



Chapter 2

Background and Previous Work

In this chapter we shall briefly review several of the perturbation theories which
are already in use. Many of these methods are based on the use of collective coor-
dinates, although in some cases this is more evident. Since many of these methods
are mathematically rather involved, it is useful to become aquainted with a familiar
model nonlinear system which one can refer to in order to use one’s physical insight
to help understand the perturbation methods and the results obtained from these
methods. To this end we begin this chapter with a discussion of the sine-Gordon
pendulum chain.

2.1 The sine-Gordon Pendulum Chain

Although any of the physical systems mentioned in Chapter 1 could serve as a
model to exhibit some of the properties of solitons, it is perhaps easier to use a
mechanical model, the sine-Gordon pendulum chain. This model has long served
as a paradigm [23] which exhibits many of the generic properties of systems bear-
ing solitons. It’s use has not been limited to gaining a rudimentary knowledge of a
typical integrable nonlinear system, but also to understand some of the more ad-
vanced concepts such as homoclinic orbits, separatrices etc. which one encounters
when one studies the transition to chaos [28].

The sine-Gordon pendulum chain consists of a chain of pendula separated
by a distance a and connected to one another by (linear) springs with torsion
constant κ as shown in Figure 2.1. The entire chain is in a gravitational field and
therefore the equations of motion which describe the angular deviation Φn of each
pendulum from vertical are given by

I
∂2Φn

∂t2
= κ[Φn+1 − 2Φn + Φn−1]−mgl sin Φ , (2.1.1)

where I = ml2 is the moment of inertia of one of the pendula, m is the mass, l
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Figure 2.1: The sine-Gordon pendulum chain.

is the length and g the gravitational acceleration. The difference between Φn and
Φn−1 will be small if the spring torsion is much larger that the gravitational torque,
that is for κ � mgl, in which case the set of difference equations in Eq. (2.1.1)
may be approximated by the following partial differential equation (PDE),

∂2Φ(x, t)

∂t2
− c20

∂2Φ(x, t)

∂x2
+ ω2

0sinΦ(x, t) = 0 , (2.1.2)

with c20 ≡ κa2I−1 and ω2
0 ≡ mglI−1 and x is the distance along a line coaxial

with the springs. Equation (2.1.2) is the now famous sine-Gordon equation. An
entire family of soliton solutions exist which can roughly be classified as being
either nonlinear radiation, kinks, or breathers. The nonlinear radiation modes are
analogous to the exact Jacobi elliptic function solutions of the single pendulum
equation of motion. If the amplitude of these modes are small enough, they reduce
to plane waves (torsional sound waves or “phonons”) which solve the linearized
equation obtained by approximating sin Φ by Φ in Eq. (2.1.2). The second class
consists of kink and antikink solitons (see Figure 2.2). Kink solutions describe a
0 to 2π twist in the chain whereas the antikinks start from 2π and decrease to 0.
The kink or antikink solution of Eq. (2.1.2) is given by

ΦK(x, t) = 4 arctan(e±γd
−1(x−vt)) , (2.1.3)

where v is the velocity of the profile,

γ =
1√

1− v2/c20
, (2.1.4)
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Figure 2.2: Single kink solution of the sine-Gordon equation.

d =
c0
ω0

, (2.1.5)

and where the plus sign refers to the kink. The factor of γ appearing in Eq. (2.1.3)
is indicative of the fact that the original Lagrangian density

L =
1

2

(
∂tΦ

)2
− c20

2

(
∂xΦ

)2
− ω2

0(1− cos Φ) , (2.1.6)

has a pseudo-Lorentz invariant form. This invariance enables us to use many of
the concepts and relations familiar from relativity. For example, the energy of a
kink traveling with velocity v is given by

E(v) = E(0)

√
1− v2

c20
, (2.1.7)

where E(0) is the “rest energy”

E(0) = M0c
2
0 ∝ c0ω0 , (2.1.8)

M0 = I

√
2

d

2π∫
0

dφ
√

1− cosφ , (2.1.9)

=
8I

d
. (2.1.10)

The final basic type of solution of the SG equation is the breather which is
given by

ΦB(x, t) = 4 arctan

(
tan ν sin[(cos ν)(t− t0)]

cosh[(sin ν)(x− x0)]

)
. (2.1.11)
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Figure 2.3: Breather solution of the sine-Gordon equation.

A plot of a breather waveform is shown in Figure 2.3 for the following parameter
values:

ν = 1 , x0 = 0 , t0 = 1 . (2.1.12)

Unlike the kink solution, the breather waveform has an envelope which oscillates
with time, hence the name breather. In addition to having single kink or breather
solutions, there are N soliton solutions which consist of nonlinear superpositions
of many radiation, kink and breather components. For example, one can find an
analytic solution in which at t = −∞ there are N well-separated solitons located
to the right of the origin and moving in the negative x direction and M solitons to
the left of the origin moving in the positive x direction. If one were to examine this
solution for t ≈ +∞ one would find the same set of solitons moving to x = ±∞.

It is indeed quite remarkable that such solutions exist, however one must
keep in mind that this is the case only for integrable systems which is not the gen-
eral situation. More importantly, it is unlikely that real physical systems may be
exactly modeled by an integrable equation. Many times, however, soliton-bearing
systems serve as a starting point to which perturbations can be added to more
closely mimic the real physical system. The addition of such perturbations will
certainly modify the propagation of the solitons and will quite likely produce some
phonons or radiation. It is therefore of great importance to develop perturba-
tion methods which not only predict the motion of solitons, but also account for
any phonons emitted and any effect they may have on the motion of the solitons.
Indeed, this interaction between the phonons and the solitons will be the most
difficult aspect to capture.
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The perturbations which modify the otherwise “straightforward” motion of
solitons come in many varieties and again we can make use of the pendulum model
for illustrative purposes. Consider for example the effect of an abrupt change
of spring constants in the pendulum chain. This effectively changes the limiting
speed, c0, for the soliton and therefore would evidence itself as a term in the
Lagrangian density of the form

Lint =
1

2
[δc0(x)]

2Φ2
x(x, t) , (2.1.13)

where δc0(x) describes the spatial dependence of the perturbation. Instead of
coupling to the square of the spatial derivative of the field, one could imagine
coupling to the first power, that is a coupling of the form

Lint = v(x, t)Φx(x, t) , (2.1.14)

where in this case we have allowed the perturbation to have an additional time
dependence. Since we will always be interested in the integral of the Lagrangian
density, it is also reasonable to consider an interaction Lagrangan density which
corresponds to integrating Eq. (2.1.14) by parts which would give us

Lint = −v′(x, t)Φ(x, t) . (2.1.15)

In terms of the pendulum chain, the integrated form in Eq. (2.1.15) is easier to
interpret; it corresponds to having a space- and time-dependent torque on the
pendulum chain.

These examples in the setting of the pendulum chain are intended to enable
us to use physical intuition in our search for a solution to the perturbed problem.
However, almost any perturbation which could be introduced in the context of
the pendulum chain has an analog in some physical system. For example, the
change in the medium manifests itself in the Josephson junction when two such
devices are spliced together. The perturbation described by Eq. (2.1.14) occurs
in charge-density-wave systems where the derivative of the field represents a local,
excess charge density [29]. A rather different type of perturbation which is present
in almost all systems is a “damping term” which in terms of the pendulum chain
would correspond to submerging the chain in a viscous medium. In addition, the
medium would be at some finite temperature and therefore a thermal noise term
would have to be added. One could continue with more examples; however, the
point is clear: any perturbation method developed should be general enough so
that a wide class of such perturbations may be handled.

2.2 Inverse Scattering Perturbation Methods

Having mentioned some of the elegant methods for studying the unperturbed inte-
grable soliton-bearing systems, one might expect that these methods could serve as
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a basis for perturbation theories. Just such a method was put forth by Keener and
McLaughlin [30]. This method treats the interaction of N solitons (on the infinite
line) with one another in the presence of weak impurities. This method utilizes
the standard method of linearizing about a (nonlinear) zeroth order solution and
writing the corrections in terms of a Green function. To ensure that the expansion
is valid for times on the order of the inverse perturbation strength, one finds that
the unperturbed zeroth order soliton solutions are not a sufficient starting point.
However one can show that by allowing the parameters (such as positions and
velocities) in these exact solutions to depend slowly on time (“modulate” in time),
that the “secularity condition” can be satisified. Using this secularity condition,
one derives equations of motion for the soliton position and velocity. Next one
solves for the radiation terms using the Green function. To carry out this last
step, the inverse scattering transform (IST) is required and herein lies the major
drawback of this method. Although the inverse scattering transform is a very
powerful and elegant method, it requires a high degree of mathematical sophisti-
cation. Even when the calculations are carried out, such as in a study of fluxons
in the Josephson junction by McLaughlin and Scott [31], the extraction of physics
requires a nontrivial understanding of the inverse scattering transform. However,
there are some distinct advantages to this method, one of them being that it applies
to “relativistic” motion of solitons. In addition, one can use this method to study
multi-soliton waveforms, a feature that is not present in the method discussed in
Chapter 3. Yet this strength is also a weakness as it confines us to the study of
integrable models.

A similar perturbation theory has been developed by Kaup and Newell [32].
In this theory, one derives modulation equations which to first order are the same
as those derived by Keener and McLaughlin. The method is based on the fact
that in integrable systems there are an infinite number of conserved quantities
and under the influence of weak perturbations these constants will change slowly.
Although the first-order equations are equivalent to those obtained by Keener and
Mclaughlin, the derivation of Kaup and Newell depends on the inverse method and
therefore is somewhat less attractive than the method discussed in the previous
paragraph.

The use of conserved quantities was carried a step further by Forest and
McLaughlin [33, 34] in their work on the sine-Gordon system on the finite line with
periodic boundary conditions. Here the use of spectral techniques (for the finite
line one uses the inverse spectral transform as opposed to the inverse scattering
transform for the infinite line) has led to a much better understanding of the
transition to chaos in the damped, driven, sine-Gordon equation [28]. A numerical
implementation of these techniques is being carried out by Flesch and Forest [35]

This work is more complex than that outlined above because it involves
problems on the finite line. The exact soliton solutions on the finite line are
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characterized by theta functions on genus-N Riemann surfaces. The calculations
essentially require a numerical evaluation of the inverse spectral transform, and
although at first glance this task seems to be quite daunting, it can be reduced to
performing 2N integrals on a genus-N Riemann surface plus solving a system of N
coupled ODEs. Again this entire technique is dependent on knowing the canonical
transformation to action-angle variables and for the finite line, the problem of
finding this transformation has only recently been resolved by Ercolani, Forest
and McLaughlin [36] for the sine-Gordon system.

It should be emphasized that the inverse method is essentially a nonlin-
ear analog of the linear Fourier transform and it will be interesting to see how
widespread its use becomes in the future. For now we leave the more mathemat-
ically based efforts and follow the development of methods which do not depend
on the integrable machinery. While such approaches may be inferior when applied
to integrable models, they apply to a much broader class.

2.3 The Translation Mode Method

One of the first methods developed to deal with perturbations was presented by
Fogel, Trullinger, Bishop and Krumhansl (FTBK) in 1976 [37]. The approach here
is one which is often used as a starting point for perturbation theories, namely to
decompose the full field Φ(x, t) into a known zeroth order solution of the system,
which is a kink, plus a “phonon” piece . This particular method is restricted to the
case in which there is one kink soliton in the system which we denote by ΦK(x, t).
The basic ansatz for this method is to assume that the solution of the perturbed
equation may be written as the sum of the kink plus a “phonon” contribution

Φ(x, t) = ΦK(x, t) + χ(x, t) , (2.3.1)

where the phonon contribution is assumed to be of the order of the perturbation.
To investigate the stability of such an ansatz, one substitutes it into the equation of
motion. Since a similar ansatz is the basis for the technique developed in Chapter
3, we consider it in some detail here as applied to the sine-Gordon system. The
substitution mentioned above leads to the following equation

χ̈− χ′′ + χ cos ΦK = 0 . (2.3.2)

This equation is further studied in the kink “rest frame” by assuming a harmonic
time dependence of the form χ(x, t) = f(x)eiωt which gives us

−f ′′ + f cos ΦK = ω2f . (2.3.3)

The problem of stability is now reduced to the question of whether the self-adjoint
“Schrödinger” operator in Eq. (2.3.3) has any negative eigenvalues ω2. In the
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example chosen this question is easily answered since Eq. (2.3.3) is exactly solvable
[38] in terms of hypergeometric functions. The spectrum of this operator consists of
one zero-frequency discrete state plus continuum states which obey the dispersion
relation

ω2 = 1 + k2 . (2.3.4)

Therefore the stability of the ansatz is answered in the affirmative and hence we
may go on to consider the significance of the solutions fb(x) and fk(x) which label
the bound and continuum states respectively.

Since the kink solution is localized in space, it is not surprising to find that
the continuum states look very much like plane waves far away from the kink with
modification in its vicinity. One can gain similar insight to the bound state solution
when one recalls that the original sine-Gordon Lagrangian density is translationally
invariant. It would appear that the introduction of a soliton would break this
invariance, however one immediately recognizes the zero-frequency bound state as
a Goldstone [39] mode which restores translational invariance. Indeed, using the
fact that the kink solution ΦK(x) satisfies the sine-Gordon equation, one can see
that the form which this bound state takes may be given as

fb(x) = Φ′
K(x) . (2.3.5)

The addition of a small amount of this bound state has the effect of translating
the kink,

ΦK(x) + εfb(x) = ΦK(x+ ε) +O(ε2) , (2.3.6)

and hence the bound state fb(x) has been termed the translation mode [40].
Now that the linear operator on the left-hand side of Eq. (2.3.3) has been

characterized, we may proceed to outline the perturbation method given in Ref.
[37]. The phonon field χ(x, t) is expanded in the complete set {fb(x), fk(x)} as

χ(x, t) = φ(t)fb(x) +

∞∫
−∞

dk φ(k, t)fk(x) . (2.3.7)

Equations of motion for φ(t) and φ(k, t) are then derived, the φ(t) solution effecting
a translation of the kink and the φ(k, t) producing phonons (radiation and/or a
localized shape change in the kink profile).

To understand one of the drawbacks of this method, we consider two cases
of a scattering problem in which the kink scatters from x = −∞ to x = ∞. In
the first case, the initial and final velocities are the same. The net effect of the
perturbation is to “phase shift” the kink position, that is the kink position as a
function of time differs from the unperturbed situation only by a constant. In
this case the translation mode method works well because the perturbation acts
on the kink for a short time, and therefore the coefficient of the translation mode
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φ(t) is a well-localized function of time. Compare this result with the case in
which the kink’s final velocity differs from its initial velocity. Here the difference
between the kink position as a function of time in the perturbed and unperturbed
cases grows linearly in time. To account for this difference the coefficient of the
translation mode must also grow linearly in time. However, the interpretation
of the translation mode as effecting a shift in the kink position is approximately
valid only for small values of φ(t). To avoid this problem one must allow the
translation-mode coefficient to evolve only for a short time, re-initialize the ODEs,
and again calculate a translation-mode coefficient. This secularity (i.e. linear
growth in time), along with the fact that the action of the phonons back on the kink
motion is difficult to derive, are the major drawbacks of this method. Since many
simulations involving a soliton have shown that it acts like an extended particle,
it might be expected that one could identify a coordinate which would describe
the translation of the soliton without producing secular terms in the perturbation
theory.

2.4 Collective Coordinate Methods

Although it was not explicitly pointed out in section 2.2, the method developed
by Keener and McLaughlin [30] is one which utilizes collective variables. The
positions and velocities of the solitons are allowed to become dynamical variables
which obey equations of motion derived from a secularity condition. Another way
in which one can make use of collective coordinates is to simply make an ansatz
for the field which incorporates parameters which are allowed to depend on time.
For example, in the sine-Gordon system we know that exact kink solutions have a
parameter x0 which locates the center of the kink, that is

ΦK(x, t;x0) = 4 arctan(ex−x0) . (2.4.1)

By allowing x0 to depend on time one can define a Lagrangian

L(x0, ẋ0; t) ≡
∞∫

−∞

dx L[ΦK(x, t;x0)] , (2.4.2)

which by using standard Euler-Lagrange techniques yields a second-order equation
for x0. This method of attack was first used by Rice and Mele as applied to poly-
acteylene [41]. Results, of course, show a kink translating according to the center
of mass coordinate x0(t). In order to incorporate the fact that the kink behaves
like a deformable particle, Rice [42] extended this ansatz to include variations of
the kink width through the use of a width parameter l(t):

Φ(x, t) = ΦK

[x− x0(t)

l(t)

]
. (2.4.3)
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Proceeding as before, equations of motion are derived for both x0 and l(t). The
equations obtained can be solved for special initial values such as l̇(0) = 0 for
which he finds that the kink obeys relativistic dynamics. For l̇(0) 6= 0 he finds
that the velocity of the center of mass of the kink has an oscillatory component
superposed on a uniform translation. The existence of “wobbling kink” solutions
for the φ4 system has since then been proved by Segur [43]. Similar solutions for
the sine-Gordon equation may be constructed, however they have been found to
be mildly unstable [43].

Although both of the collective coordinates introduced above appear to be
simply parameters of the kink waveform, there is a major difference. If we only
include the x0 coordinate, the ansatz in Eq. (2.4.3) is still a solution of the original
field equations. This is a consequence of the translational invariance of the orig-
inal Lagrangian. In contrast, the only value of l for which Eq. (2.4.3) solves the
original field equation is for l = 1. Therefore the x0 coordinate is a more funda-
mental collective coordinate than the l coordinate. This difference may be further
exposed by recalling that the x0 coordinate is a consequence of the fact that there
is a continuous symmetry in the Lagrangian whereas the l coordinate is merely
a parameter. For this reason, the l coordinate has been termed a “parametric
collective coordinate” [15, 42]. The center of mass collective coordinate is referred
to as a “linear collective coordinate” because it can be thought of as arising from
the translation mode

ΦK(x+ x0) ≈ ΦK(x) + x0Φ
′
K(x) . (2.4.4)

A rather different collective coordinate has been identified by Bergman and
co-workers [44]. Their definition uses the fact that since for both topological and
non-topological solitons, the derivative of the soliton waveform, which is a measure
of the energy density, is a well-localized function in space it therefore gives an
indication as to where the soliton is located. Since this derivative is an odd function
of x they use as their collective coordinate

Q ≡ 1

2π

∞∫
−∞

xΦxdx , (2.4.5)

along with a momentum defined by

P ≡
∞∫

−∞

ΠΦxdx , (2.4.6)

where Π is the momentum conjugate to Φ. Equations of motion for these newly
defined coordinate and momentum variables, which can be shown to be canonically
conjugate, are then derived. These equations imply that the soliton behaves as a
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Newtonian particle under the influence of an effective potential (after transients,
which may be due to turning on the perturbation, have died out). Although the
result which states that the soliton behaves as a Newtonian particle confirms previ-
ously held beliefs, the method presented says nothing of the phonons emitted and
any effect they might have on the soliton. In fact, as defined in Eq. (2.4.5), the
coordinate Q includes any phonon effects which might arise. In order to resolve
this problem, one would have to clearly identify a soliton and phonon component.
Exactly such a separation was acomplished by Tomboulis [45, 46] and indepen-
dently by Gervais et al. [47]. Since this technique is the basis for the present work,
we shall consider it in some detail.

The class of problems to which the method of Tomboulis is applicable can
be described by nonlinear Klein-Gordon field theories, that is, field theories which
have Lagrangians of the form

L =

∞∫
−∞

dx
{1

2
Φ2
t −

1

2
Φ2
x − U(Φ)

}
, (2.4.7)

where U(Φ) is a nonlinear potential such as the sine-Gordon, φ4, double quadratic
[48] or one of the infinite class of potentials recently found by Trullinger and Flesch
[49], to name just a few. The equation of motion for this Lagrangian is given by

Φtt − Φxx + U ′(Φ) = 0 (2.4.8)

where x and t are dimensionless space and time variables. The potentials U(Φ)
which are to be studied are those for which Eq. (2.4.8) has exact static kink
solutions denoted by φc(x−X) whereas before X was merely a parameter locating
the center of the soliton. Again we allow X to become a time-dependent dynamical
variable. This would seem to solve one of the problems mentioned above, namely
it would identify a pure kink component; however, the phonons have yet to be
accounted for. This last problem is solved by making the following transformation

Φ(x, t) = φc(x−X(t)) + χ(x−X(t), t) , (2.4.9)

with χ identified as the phonon field. So far Eq. (2.4.9) looks just like several of
the ansätze already examined. What sets it apart is the fact that one can find a
transformation for the momentum Π0(x, t) conjugate to the field Φ(x, t)

Π0(x, t) = π(x−X(t))− p+
∫
πχ′

M0(1 + ξ/M0)
φ′c(x−X(t)) , (2.4.10)

[M0 ≡
∫
φ′2c , ξ ≡

∫
χ′φ′c] which makes the entire transformation

{Φ(x, t),Π0(x, t)} −→ {X(t), p(t), χ(x, t), π(x, t)} , (2.4.11)
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canonical. (Here, and in the following, integrations over position x are under-
stood to be implicit by integrals signs, unless otherwise indicated. For instance,∫
χ′φ′c ≡

∞∫
−∞

dx χ′(x, t)φ′c(x).) The X coordinate we have already identified as

the kink position coordinate and p is the momentum conjugate to X. Similarly,
χ describes the phonon field and π is the momentum conjugate to χ. The part
of the transformation given in Eq. (2.4.9) is a very reasonable ansatz while the
momentum transformation is what is required for the entire transformation to be
canonical; this is also why the argument of the χ field in Eq. (2.4.9) is shifted by
X. The rather complex nature of this momentum transformation should tell us
that the interaction between the soliton motion and the phonons is indeed quite
complicated. One might begin to worry that because the transformation is so non-
linear the equations of motion might not yield a particle-like picture. Although
this is indeed something to worry about, we shall show in Chapter 3 that in fact
one can derive a Newton’s equation for the X variable although in its exact form
the force on the “particle” is quite complex.

One of the virtues of the method just outlined is that the transformation
can be shown to be canonical which is of great benefit when one quantizes the
system and when phase space integrals are done. (The Jacobian is unity for a
canonical transformation). The existence of a Newton’s equation allows us to use
intuition from single particle dynamics to guide us in the solution of problems. In
addition, having X(t) as a dynamical variable moves the secularity which occurs in
the FTBK [37] method to higher order. However, there are of course deficiencies in
this method. Even though Tomboulis and Woo [46] have extended this formalism to
include multi-soliton waveforms (the degree of difficulty in the actual manipulations
needed to implement this more general case increases rapidly with the number of
solitons present), it is still restricted to a fairly narrow class of nonlinear problems.
An obvious question to ask is whether there are similar transformations available
for other classes of soliton-bearing systems.

Although no general method has been proposed to find the proper canonical
transformation for an arbitrary nonlinear system, we can point to another example
in which one can be found. The nonlinear equation in this case is the double sine-
Gordon equation [50]. The potential for a particular version of the double sine-
Gordon equation is periodic in 4π with two unequal minima (see Figure 2.4). The
4π kink solution for this system can be viewed as a “bound pair” of successive 2π
kinks and is shown in Figure 2.5. As stressed above, one would like to be able to
identify certain physically motivated coordinates which describe the system. From
Figure 2.5, it is clear what the two relevant coordinates should be in this case,
namely a coordinate which fixes the position of the first kink (or the midpoint
between the two) and a second which describes the relative displacement of the
two kinks. With these coordinates one must look for a canonical transformation
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Figure 2.4: Double sine-Gordon potential.

Figure 2.5: The 4π double sine-Gordon kink.
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which utilizes them. Such a transformation has been found by Willis and co-
workers [51, 52, 53]. In addition they have done some interesting work with discrete
versions of the continuum models discussed so far [54, 55]. Therefore the process
of identifying pertinent coordinates seems to have some promise and one might
wonder to what extent one could push this concept. For example, one could
ask to what extent the canonical nature of the transformation is important for
classical problems. If one could simply propose a reasonable ansatz based on such
coordinates, the applicability of the collective coordinates would greatly expand.

To this end we consider the work of Campbell et al. [15]. In this work the
collisions of a φ4 kink and an antikink was investigated via integration of the full
PDE. The results showed that, depending on the initial velocity of the incoming
kinks, either a bound state was formed which eventually decayed to zero by emis-
sion of radiation, or the kinks “resonated with one another” until they separated
and finally scattered to ±∞. The resonance windows observed were quantitatively
explained by showing that when the kinks collided there was an exchange of energy
from the translational kinetic energy into a shape mode oscillation of the kinks.
This shape mode oscillation is little more than a modulation of the kink’s width.
Here we see another likely candidate for a collective coordinate, namely the width
of the kink. Campbell et al. proposed the following ansatz simliar to that used by
Rice [42] to study the kink collision

Φ(x, t) = 1− φc
[
y0(x− x0)

]
+ φc

[
y0(x+ x0)

]
(2.4.12)

where x0 and y0 are time dependent coordinates. Simulations using this by Flesch
and Campbell have so far yielded mixed results which will be discussed in Chapter
7.

2.5 Thermal Fluctuations

So far we have restricted our attention to perturbations which we have been able
to describe in terms of a well-defined function v(x, t). Although a great many
perturbations fall into this class, it excludes random perturbations caused by ther-
mal fluctuations which are present in all physical systems and are represented by
a stochastic function v(x, t) which cannot be given an explicit form but, rather,
is characterized only by its correlation functions. Of particular importance are
situations in which there is an external field which drives currents. Simple calcu-
lations [17] show that at low temperatures the current in Josephson junctions for
example is dominated by the motion of kinks. It is therefore important to study
the dynamics of solitons under the influence of thermal fluctuations.

One of the first attempts to deal with such perturbations was put forth
by Trullinger et al. [56]. Extending a method introduced by Stratanovich [57]
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and independently by Ambegaokar and Halperin [58] which dealt the motion of a
single pendulum, they wrote a multiparticle Fokker-Planck equation for the sine-
Gordon chain. By integrating over the momentum degrees of freedom (valid in the
large damping limit) a multidimensional Smoluchowski equation was derived. This
equation was solved by using a Hartree-like separation ansatz for the distribution
function which reduced the problem to a single pendulum problem. The solution
of this equation allows one to calculate the average angular velocity of a pendulum.
This in turn allows one to calculate a mobility which for low temperatures behaves
as 1/T with finite-damping corrections given as a power series in the reciprocal
damping constant η−1 by Lee and Trullinger [59]. Although this result is rather
unphysical there is some numerical evidence by Schneider and Stoll [60] which
supports a mobility which diverges as T → 0, however their best fit yields a T−3/2.
We should also note that the reliability of these results has been questioned [61].

A different approach to the problem of thermal fluctuations in the over-
damped sine-Gordon system was given by Büttiker and Landauer [61, 62, 63].
This method is based on the calculation of the nucleation rate of kink-antikink
pairs which if they are bound weakly enough can be pulled apart by the external
field and then contribute to the conduction process. Using these nucleation ideas
they calculated a finite zero temperature mobility in contrast with the results of
Trullinger et al. [56]. Of course one cannot expect any real physical quantity such
as the current to diverge, so the diverging mobility can only be valid for T > T0

for some value of T0.
An alternate approach for calculating the low temperature mobility was

given by Kaup [64]. Using a singular perturbation technique, he calculated the
velocity of a heavily damped kink under the influence of a fluctuating force. These
results led to a zero temperature mobility which agrees with the value given by
Büttiker and Landauer. In addition they found the finite temperature corrections
to depend linearly on the temperature.

These radically different results have caused a bit of controversy. Guyer
and Miller [65] have compared both methods implemented, pointing out the rel-
evant assumptions made in both. However this has not ended the speculation as
evidenced by a comment by Büttiker and Landauer [66] in which they point out
some inconsistencies in Guyer and Miller’s paper.

A somewhat different method for studying thermal effects on kinks was
presented by Wada and Schrieffer [67]. In this work they considered the effect
of the collison between a phonon packet and a φ4 kink. They found that to first
order the effective force between the kink and the phonons to be purely attractive
and that the kink experienced only a phase shift. In addition, it was found that
no secondary phonons were created. To introduce the thermal fluctuations they
assumed that the phonons were thermally distributed, and then calculated the
average displacement of the kink. From this they deduced a “diffusion constant”.
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I use the quotes here because one usually associates diffusion with the motion of a
particle in a viscous medium whereas, as will be shown in Chapter 6, their method
predicts that the initial velocity of a kink is not damped to zero.

The same methods used by Wada and Schrieffer were carried to higher
order by Ogata, Wada, and coworkers in a series of papers for the φ4 [68, 69], sine-
Gordon system [70], and for polyacetylene [71, 72, 73, 74]. Using diagrammatic
techniques they found that when one includes terms which are of fourth order in
the phonons one finds true dissipation, that is one can show that a fluctuation-
dissipation theorem holds. However, as in the work of Wada and Schrieffer, they did
not include any explicit coupling to an external heat bath. They merely assumed
that somehow the phonons were described by some distribution function. We
shall show in Chapter 6 that their choice of distribution functions is in fact the
correct one to use in lowest order if an explicit coupling to a heat bath is also
included. Without such a coupling, some very important physics is missed, namely
that to lowest order the kink behaves just like a Brownian particle. This result is
recovered when a collective-coordinate approach is implemented. Furthermore, we
find that the thermal fluctuations have the effect of adding temperature-dependent
corrections to the mass and diffusion constant.



Chapter 3

Collective-Coordinate
Perturbation Theory

Having reviewed many of the perturbation theories used to study soliton dynam-
ics, we develop a new method based on a canonical transformation developed by
Tomboulis. This transformation identifies a “center of mass” coordinate X(t)
which is found to satisify a Newtonian equation of motion (to lowest order)

M0Ẍ = F (Ẋ, t) ,

adding to the existing evidence [30, 31, 32, 37, 42, 44] which indicates that the
kink does indeed behave like an extended Newtonian particle (for low velocities).
The extended nature of this particle becomes apparent when the exact form of the
force on the kink is examined. Before deriving this force, we quickly review some
of the important facts about the small oscillations about nonlinear Klein-Gordon
kinks.

3.1 Small Oscillations

In this section we briefly review the main features of solutions to the nonlinear
Klein-Gordon class of field theories and the canonical transformation which forms
the basis for our perturbation theory. The single-kink solutions to the wave equa-
tions along with small oscillations about these kinks will be described. The various
quantities described in this section are collected in Table I for the sine-Gordon,
φ4, and double-quadratic potentials (this table corrects some errors in Table 3.1 of
Ref. [75] and a similar error in Eq. 4.16b in Ref. [76]).

The general nonlinear Klein-Gordon Lagrangian we consider has the form

L =

∞∫
−∞

dx
{1

2
Φ2
t −

1

2
Φ2
x − U(Φ)

}
, (3.1.1)

22
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Table 3.1: Various quantities for the φ4, SG and DQ systems
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where x and t are dimensionless space and time variables and U(φ) is the nonlin-
ear potential with at least two degenerate minima. The nonlinear wave equation
satisified by Φ(x, t) is

Φtt − Φxx + U ′(Φ) = 0 , (3.1.2)

where the prime on U(Φ) denotes a derivative with respect to Φ. Static single-
kink solutions, φc(x), of Eq. (3.1.2) may be obtained by direct integration with
the boundary conditions

dφc(x)

dx

∣∣∣
x=±∞

= 0 , (3.1.3)

The static kink (+) and antikink (-) solutions are given by

x = ± 1√
2

φc(x)∫
φc(0)

dφ√
U(φ)

, (3.1.4)

Moving solutions can be obtained by a Lorentz boost.
The equation governing the small oscillations about the static kink wave-

form is obtained by substituting

Φ(x, t) = φc(x) + ψ(x, t) , (3.1.5)

into Eq. (3.1.2) and linearizing in ψ:

ψtt − ψxx + ψU ′′[φc(x)] = 0 . (3.1.6)

Here U ′′[φc(x)]denotes the second derivative of U(φ) with respect to φ evaluated
for φ = φc(x). Writing ψ as

ψ(x, t) = f(x)eiωt , (3.1.7)

leads to the following eigenvalue equation:

−fxx + U ′′[φc(x)]f = ω2f . (3.1.8)

Due to the localized nature of the kink waveform φc(x), the function U ′′[φc(x)]
varies mainly in the region of the kink center (assumed to be at x = 0) and
approaches a constant (taken to be unity) far from the kink center:

U ′′[φc(x)] −−−→
|x|→∞

1 . (3.1.9)

Moreover, the function U ′′[φc(x)] has a minimum at x=0 such that

U ′′[φc(0)] < 0 . (3.1.10)



25

From these properties, we see that there exists a close analogy between Eq. (3.1.8)
and the Schrödinger equation for a “particle” moving in a one-dimensional “po-
tential well”, U ′′[φc(x)]. The “bound state(s)” and “continuum” states for this
potential are of fundamental importance for statistical mechanics phenomenologies
[76], perturbation theories for kink dynamics [76, 37], and quantization procedures
for kink states [77, 45, 47, 78, 79, 80, 81].

Since the Lagrangian (3.1.1) possesses translational invariance, the spec-
trum of the small oscillations about the single kink must contain a zero-frequency
(ω = 0) “translation” mode (Goldstone mode) which restores the translational
invariance broken by the introduction of the kink. In addition to this translation
mode there may be other discrete eigenvalues (“bound states”) with frequencies
between 0 and 1. These solutions, denoted by fb,i(x), correspond to “internal” os-
cillation modes in which the kink undergoes a harmonically varying shape change
localized about the kink center. We denote these bound-state eigenfrequencies by
ωb,1 . . . ωb,N where N is the total number of bound states. The lowest of these is
ωb,1 = 0 since all other ω2

b,i must be non-negative in order for the kink to be stable
against small oscillations.

In addition to the bound states, there exist continuum states (continuous
spectra) which are labelled by a wavevector k. These states have eigenvalues ω2

k

given by
ω2
k = 1 + k2 . (3.1.11)

which is precisely the dispersion relation for small oscillations in the absence of
kinks.

The continuum states together with the bound-states form a complete set
and satisfy the completeness relation,

N∑
i=1

f ∗b,i(x)fb,i(x
′) +

∞∫
−∞

dkf∗k (x)fk(x
′) = δ(x− x′) . (3.1.12)

and the following orthogonality relations:

∞∫
−∞

dxfb,n(x)fb,m(x) = δm,n ,

∞∫
−∞

dxf ∗k (x)fk′(x) = δ(k − k′) ,

∞∫
−∞

dxfk(x)fb,n(x) = 0 . (3.1.13)

In the case in which φ′c(x) is symmetric, U ′′[φc(x)] is also symmetric and therefore
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the continuum states may be chosen to have definite parity (if desired):

fk(−x) = ±f−k(x) = ±f ∗k (x) . (3.1.14)

In addition, the following identity has been recently found [82]

N∑
i=2

1

ω2
b,i

f ∗b,i(x)

∞∫
−∞

dyfb,i(y)φ
′′
c (y) +

∞∫
−∞

dk
1

ω2
k

f ∗k (x)

∞∫
−∞

dyfk(y)φ
′′
c (y) =

1

2
xφ′c(x) ,

(3.1.15)
which can be readily proved by applying −∂2/∂x2 +U ′′[φc(x)] to both sides of Eq.
(3.1.15).

Having illustrated the complete set of states associated with the linear op-
erator given in Eq. (3.1.6), one might conclude that all of the relevant solutions of
Eq. (3.1.6) have been found. This is not the case as has been pointed out in some
recent work of Magyari and Thomas [83]. In searching for solutions of Eq. (3.1.6)
we assumed a harmonic time dependence. However in general we should make the
separation of variables ansatz

ψ = Q(t)f(x) . (3.1.16)

Substituting this separation ansatz into Eq. (3.1.6) we obtain the following equa-
tion for Q(t):

Q′′(t) + λQ(t) = 0 , (3.1.17)

where λ is the separation constant. For λ 6= 0 we do indeed find a harmonic time
dependence for Q(t), however for λ = 0 there exists another solution which is linear
in time

Q(t) = at+ b . (3.1.18)

Therefore we find that we have a degeneracy of the zero frequency eigenvalue. Just
as the original zero frequency can be interpreted as having the effect of translating
the kink in space, the second solution, termed the “defective degeneracy” [83], has
the effect of inducing an infinitesimal velocity change in the kink. To see this we
simply add the second solution to a stationary kink

φc(x+ εt) ≈ φc(x) + εtφ′c(x) . (3.1.19)

The physical significance of this defective degeneracy can be further illus-
trated by considering the effects of an additional damping term ηΦt to Eq. (3.1.2).
Using the same separation ansatz we obtain the following equation for Q(t)

Q′′(t) + ηQ′(t) + λQ(t) = 0 . (3.1.20)

Again one can assume a harmonic time dependence

Q(t) = e−iω1,2t , (3.1.21)
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with ω1,2 given by

ω1,2 = ±
√
λ− 1

4
η2 − 1

2
iη . (3.1.22)

Now the eigenvalue λ = 0 is no longer degenerate since in this case we obtain
ω = 0 (Goldstone mode) and ω = −iη. Therefore with the addition of damping,
the defective degeneracy of the λ = 0 eigenvalue is lifted by the occurence of the
“relaxation mode”

Q(t) = e−ηt , (3.1.23)

which describes the deceleration of an infinitesimally slowly moving kink to a
shifted (φ′c(x) still shifts the kink) static kink. This “degree of freedom” is actually
accounted for by the kink velocity coordinate Ẋ(t) which is introduced in the next
section.

3.2 The Collective Coordinate and the Canoni-

cal Transformation

As mentioned in Chapter 2, a transformation to a set of variables in which one can
easily identify a kink coordinate would be of great utility when one describes the
motion of a kink. Such a transformation has been found [45, 47] for unperturbed
nonlinear Klein-Gordon field theories. This transformation decomposes the full
field Φ(x, t) into a classical kink solution φc(x) whose center translates according
to the dynamical variable X(t) plus a “radiation” field χ(x, t)

Φ(x, t) = φc(x−X(t)) + χ(x−X(t), t) (3.2.1)

The momentum conjugate to the field φ(x, t) is also decomposed into a soliton
component plus a radiation field

Π0(x, t) = π(x−X(t), t)− p+
∫
πχ′

M0(1 + ξ/M0)
φ′c(x−X(t)) , (3.2.2)

where M0 ≡
∫
φ′cφ

′
c and ξ ≡

∫
χ′φ′c. The prime denotes differentiation with respect

to the argument and unless otherwise specified, all integrals denote one-dimensional
integrals over x.

Having made the transformation

{Φ(x, t),Π0(x, t)} → {X(t), p(t), χ(x, t), π(x, t)} , (3.2.3)

one notices that the number of degrees of freedom are not conserved, that is, on
the left-hand side of Eq. (3.2.3) we have two full field degrees of freedom whereas
on the right-hand side we have two full field degrees of freedom plus two discrete
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degrees of freedom. To remedy this situation, we must impose the following two
constraints

∞∫
−∞

dx χ(x, t)φ′c(x) = 0 ,

∞∫
−∞

dx π(x, t)φ′c(x) = 0 . (3.2.4)

The first of these constraints has the interpretation that the ψ field cannot have a
term proportional to the translation mode, that is, the effect of the ψ field cannot
cause the kink to translate. This is a very reasonable constraint since we have a
dynamical variable whose only purpose is to translate the kink. The second of the
constraints has a similar interpretation.

This transformation is not typical due to the presence of the constraints. To
show that it is a canonical transformation, one must resort to the Dirac formalism
for constrained systems [84]. Usually when one deals with constrained systems,
the constraints cannot be used until all of the Poisson brackets have been taken,
that is, the equalities in Eqs. (3.2.4) are “weak equalities”. The Dirac formalism
makes these equalities strong by modification of the brackets (Dirac brackets). For
this particular transformation the brackets are{

χ(x, t), π(y, t)
}

= δ(x− y)− 1

M0

φ′c(x)φ
′
c(y) , (3.2.5){

X, p
}

= 1 , (3.2.6)

with all remaining brackets vanishing. Using these brackets one can verify that
the brackets in terms of the original variables satisfy the standard relations, that
is {

Φ(x, t),Φ(y, t)
}

=
{
Π0(x, t),Π0(y, t)

}
= 0 . (3.2.7){

Φ(x, t),Π0(y, t)
}

= δ(x− y) , (3.2.8)

In what follows, every time a bracket appears it is meant to indicate a Dirac
bracket.

We can gain further insight into the transformation by examining the form
which some of the energy-momentum tensor elements take in terms of the new
variables. First we consider the Hamiltonian

H =
∫
T00

=
∫ {1

2
Π2

0 +
1

2
Φ′2 + U(Φ)

}
,

= M0 +
1

2M0

(p+
∫
πχ′)2

(1 + ξ/M0)2
+
∫
Hf , (3.2.9)



29

where

Hf =
1

2
π2(x, t) +

1

2
χ′2(x, t) + V (χ, φc) , (3.2.10)

V (χ, φc) = U(φc + χ)− χ(x, t)U ′(φc)− U(φc) , (3.2.11)

where primes denote differentiation with respect to the argument and repeated use
of

φ′′c = U ′(φc) , (3.2.12)

and
1

2
(φ′c)

2 = U(φc) , (3.2.13)

has been made. Given the Hamiltonian in terms of the new variables, one can
derive the equations of motion for the dynamical variables. In particular we find
that the equation for X is given by

Ẋ =
p+

∫
πχ′

M0(1 + ξ/M0)2
(3.2.14)

Using this equation of motion for X we can rewrite the Hamiltonian as

H = M0 +
1

2
M0(1 + ξ/M0)

2Ẋ2 +
∫
Hf . (3.2.15)

In this form we see that H almost decouples into a kink contribution and a phonon
contribution. The term which prevents this decoupling can be understood to be
a renormalization of the mass M0. This coupling represents the interaction of the
phonons back on the kink and is one the most interesting aspects of this method.

Next we turn our attention to the total momentum of the system

P ≡
∫
T01 = −

∫
T 01 , (3.2.16)

=
∫

Π0(x, t)Φ
′(x, t) , (3.2.17)

=
∫
π(x−X, t)

[
φ′c(x−X) + χ′(x−X, t)

]
− p+

∫
πχ′

M0(1 + ξ/M0)

∫ [
φ′c(x−X)χ′(x−X, t) + φ′c(x−X)φ′c(x−X)

]
(3.2.18)

=
∫
πχ′ − p+

∫
πχ′

M0(1 + ξ/M0)
(M0 + ξ) (3.2.19)

= p . (3.2.20)

From this we see that the variable p actually represents the total momentum of
the system and not the kink momentum, even though it is conjugate to X(t). It
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might appear that this would be rather inconvenient when one wishes to interpret
the solutions to the equations of motion. This is not the case since in the following
section we derive a second order equation forX. However it does present difficulties
when we want to fix kink degrees of freedom in the Fokker-Planck method to be
developed in Chapter 6. This problem can be avoided by using a transformation
in which the momentum conjugate to the center of mass variable X is the kink
momentum. The transformation for which p is the kink momentum is given by

Φ(x, t) = φc(x−X(t)) + χ(x, t) (3.2.21)

Π0(x, t) = π(x, t)− p+
∫
πχ′

M0(1 + ξ/M0)
φ′c(x−X(t)) , (3.2.22)

with the constraints

∞∫
−∞

dx χ(x, t)φ′c(x−X) = 0 ,

∞∫
−∞

dx π(x, t)φ′c(x−X) = 0 . (3.2.23)

To complete the transformation the Dirac brackets must be presented. The bracket
of χ with π is the same as before but the brackets of the phonon variables χ and
π with the momentum p become

{
χ(x, t), p

}
= 1− ξ

M0

φ′c(x−X) , (3.2.24)

= 1− Pφcχ′(x−X) (3.2.25){
π(x, t), p

}
= 1− φ′c(x−X)

M0

∞∫
−∞

dx φ′c(x−X)π′(x, t) , (3.2.26)

= 1− Pφcπ′(x−X) , (3.2.27)

with all other brackets zero. In the last step we have introduced the “translation-
mode” projection operator Pφc defined by

PφcG(x, t) =
φ′c(x)

M0

∫
φ′c(x)G(x, t) . (3.2.28)

This operator projects out that piece of any function which “overlaps” with the
translation mode φ′c(x).

In the actual calculation of the equations of motion one does not gain any
advantage with either of the two brackets. The second transformation has the
advantage that p is the kink momentum while the first, which is the one which
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will be implemented in the following chapters, has the virtue that the phonon
field translates with the kink center of mass. This is especially useful when the
interaction of the kink with the perturbation results in a permanent distortion of
the kink waveform.

Finally we note that with the additional definition of a Lorentz boost gen-
erator

L =
∫
xT00 , (3.2.29)

Tomboulis has shown [45] that the three operators H, P , and L form a Poincaré
algebra,

{H,P} = 0

{L, P} = H

{L,H} = P , (3.2.30)

and therefore the unperturbed transformation preserves the Lorentz invariance
evident in the Lagrangian.

3.3 The Perturbed System

The types of perturbations which we study have interaction Hamiltonians which
may be written in the form

Hint = −
∞∫

−∞

dx v(x, t) F [Φ(x, t),Φx(x, t)] , (3.3.1)

where v(x, t), assumed small in magnitude, denotes the space and time dependence
of the perturbation and F [Φ(x, t),Φx(x, t)] tells us how the perturbation couples
to the field. The case in which the coupling function F is linear in the field and
v(x, t) = δ(x − x0) could be physically realized in terms of the pendulum chain
if one of the pendula experienced a uniform external torque. Similarly for the
pendulum chain, if F = Φ2

x and v(x, t) = θ(x − x0), the perturbation may be
thought of as arising from an abrupt change in the spring constant of the chain.
The general form of the perturbation (3.3.1) should allow many other types of
perturbations to be examined, some of which will be presented in Chapter 5.

The aim of the perturbation theory is of course to study its influence on
the kink. It should be kept in mind that even without the presence of a kink
the perturbation influences the system. For example, if the perturbation is a
torque on one of the pendula as mentioned above, the field in the vicinity of the
applied torque will be modified as shown in Figure 3.1 This deformation will be
present with or without the kink. If the kink scatters off of this perturbation,
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Figure 3.1: Response of the sine-Gordon pendulum chain to a constant torque on

a single pendulum

long before and after the scattering event the field in the region of the torque will
be as shown in Figure 3.2 (neglecting any emitted phonons). The transformation
described in the previous section could account for this feature through the χ
field, however this is unattractive since then χ(x,±∞) would be nonzero making
the boundary conditions more difficult to deal with. Indeed, if this background
response is not included from the outset, the field evolves in such a way as to
“build up” this response and, in the process, the kink dynamics can appear [85] to
be non-Newtonian. It is clear that one would like to take care of this deformation
from the start and, in doing so, Newtonian dynamics is recovered. We accomplish
this by introducing the “background” field ψ0(x, t) and modifying the canonical
transformation to include it as follows

Φ(x, t) = φc[x−X(t)] + ψ[x−X(t), t] + ψ0(x, t) , (3.3.2)

Π0(x, t) = π[x−X(t)]− p+
∫
πψ′

M0(1 + ξ/M0)
φ′c[x−X(t)]− ψ̇0(x, t) , (3.3.3)

where M0 and ξ are still defined by

M0 =
∫
φ′cφ

′
c , (3.3.4)

ξ =
∫
ψ′φ′c , (3.3.5)
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and the constraints are given by∫
dx φ′c(x)ψ(x, t) = 0 (3.3.6)∫
dx φ′c(x)π(x, t) = 0 . (3.3.7)

The ψ0 term in Eq. (3.3.2) represents the response of the field to the perturbation
in the absence of a kink and obeys the following equation:

[∂tt − ∂xx]ψ0(x, t) + ψ0U
′(ψ0)− F10[ψ0, ψ

′
0]v(x, t) +

d

dx
(v(x, t)F01[ψ0, ψ

′
0]) = 0 ,

(3.3.8)
with Fij defined by

Fij ≡
∂i+jF [Φ,Φx]

∂Φi∂Φj
x

. (3.3.9)

The field decomposition given in Eq. (3.3.2) is perhaps best illustrated with
an example. Consider the “torqued pendulum” perturbation mentioned above with
the kink scattering from X = −∞ to X = ∞. In Figure 3.2 we show the field for
times long before and after the scattering takes place. For t = −∞ the kink has
not yet interacted with the perturbation and therefore the field consists of the kink
plus the background deformation. For large positive times the kink has scattered
off of the perturbation and in the process emitted some phonons. These phonons
are described by the ψ field while the ψ0 field still accounts for the deformation in
the region of the applied torque.

It has been shown [45] that Eqs. (3.3.2) and (3.3.3) specify a canonical
transformation when no perturbation is present, that is for ψ0 = 0 and v(x, t) = 0.
That Eqs. (3.3.2) and (3.3.3) along with the constraints in Eqs. (3.3.6) and (3.3.7)
still form a canonical transformation in the presence of a perturbation can be
proved as follows. For no perturbation, Eqs. (3.3.2) and (3.3.3) are a point trans-
formation of equations (3.2.1) and (3.2.2) and therefore the transformation is still
canonical. The addition of a perturbing piece to the Hamiltonian has no effect
since the canonical nature of the transformation depends only on the transforma-
tion equations and not on the Hamiltonian [86].

With the canonical transformation in hand, we may proceed to derive the
equations of motion for the dynamical variables by using the Dirac-bracket formal-
ism for constrained systems [84]. As in the previous section, the nonzero brackets
for our system are

{ψ(x, t), π(y, t)} = δ(x− y)− φ′c(x)φ
′
c(y)

M0

, (3.3.10)

{X(t), p(t)} = 1 (3.3.11)
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Figure 3.2: The various contributions to the field for the “torqued pendulum”

perturbation. The solid line represents the kink contribution, the dashed line the

background field ψ0 and the dotted line the phonon portion ψ.
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The bracket in Eq. (3.3.10) may be interpreted as a projection operator when
it occurs under an integral sign which is always the case when the equations of
motion are derived. For example, consider the following operation involving an
arbitrary functional G[π(y, t)] of the momentum field:∫

dx{ψ(x, t), G(π(y, t))}

=
∫
dxG′(π(y, t)){ψ(x, t), π(y, t)} (3.3.12)

= G′(π(x, t))− φ′c(x)

M0

∫
φ′c(x)G

′(π(x, t)) (3.3.13)

= (1− Pφc)G′(π(x, t)) . (3.3.14)

Given the brackets in Eqs. (3.3.10) and (3.3.11) , we may derive the equa-
tions of motions by taking the Dirac bracket of the dynamical variables with the
Hamiltonian. Using the fact that the Hamiltonian in terms of the original variables
is given by

H =
1

2

∞∫
−∞

dx
[
Π2

0(x, t) + Φ′2(x, t) + U [Φ]
]
+Hint , (3.3.15)

we write the Hamiltonian in terms of the new variables as

H = H0 +Hψ0 +Hint , (3.3.16)

where

H0 = M0 +
1

2M0

(p+
∫
πψ′)2

(1 + ξ/M0)2
+
∫
Hf , (3.3.17)

Hf (x, t) =
1

2
π2(x, t) +

1

2
ψ′2(x, t) + V (ψ, φc) , (3.3.18)

and
V (ψ, φc) = U(φc + ψ)− ψ(x, t)U ′(φc)− U(φc) . (3.3.19)

Hint is given in Eq. (3.3.1) and Hψ0 is defined by

Hψ0 = −π[x−X(t), t]ψ̇′0(x, t) +
p+

∫
πψ′

M0(1 + ξ/M0)
φ′c[x−X(t)]ψ̇0(x, t)

+ ψ′[x−X(t), t]ψ′0(x, t) + φ′c[x−X(t)]ψ′0(x, t) + ∆U , (3.3.20)

with

∆U = U [φ(x) + ψ(x, t) + ψ0(x+X(t), t)]− U [φ(x) + ψ(x, t)] . (3.3.21)

The calculation of the equations of motion for X, p, ψ, π is straightforward but
tedious and is therefore relegated to Appendix A.
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Since we are most interested in the kink center of mass motion, it is useful
to derive a second order equation for the kink center of mass variable X(t). Using
Eq. (A.23) from Appendix A we have

M0Ẍ =
1

(1 + ξ/M0)

{
−
∫
v(x, t)

[
φ′c(x−X)F10[Φ,Φx] + φ′′c (x−X)F01[Φ,Φx]

]
+

∫ [
ψ̈0(x, t)− ψ′′0(x, t)

]
φ′c(x−X) +

∫
φ′c(x−X)U ′[Φ(x, t)]

+ (1 + Ẋ2)
∫
ψ′φ′′c − 2Ẋ

∫
π′φ′c + 2Ẋ

∫
φ′c(x)ψ̇

′
0(x+X, t)

}
. (3.3.22)

where Φ is understood to mean Φ(x, t). Since we have not yet made any approxi-
mations, Eq. (3.3.22) is exact and states that the kink center of mass variable X(t)
obeys Newton’s law. The “force” that the kink experiences, that is the right-hand
side of Eq. (3.3.22), has several interesting properties. First, it includes terms
which depend on the radiation field ψ(x, t) and therefore the equations that must
be solved are really a set of integro-differential equations which are most easily
solved perturbatively. Physically, the presence of ψ in the kink equations means
that any phonons produced by the propagation of the kink in the perturbed system
in turn affect the kink’s motion. The second interesting feature of the “force” on
the kink is that one of the terms is proportional to the square of the kink velocity,
that is, there is a “dissipative” term in the center of mass equation of motion.
Because we started with a Hamiltonian system, this “dissipative” term cannot
represent a real loss of energy. Rather, this term represents a transfer of energy
between the kink center of mass motion and the radiation field.

One is tempted to interpret the term which is linear in Ẋ as also representing
a transfer of energy. However, further examination of Eq. (3.3.22) indicates that
this term is actually part of the inertia of the kink. To see this we make use of Eq.
(A.13) of Appendix A to replace the π′(x, t) term in Eq. (3.3.22) by an equivalent
expression in terms of the ψ and ψ0 fields:∫

π′φ′c =
∫
ψ̇′φ′c − Ẋ

∫
ψ′′φ′c +

∫
ψ̇′0(x+X, t)φ′c(x) . (3.3.23)

Substitution of this expression in to Eq. (3.3.22) yields

M0Ẍ =
1

(1 + ξ/M0)

{
−
∫
v(x, t)

[
φ′c(x−X)F10[Φ,Φx] + φ′′c (x−X)F01[Φ,Φx]

]
+

∫ [
ψ̈0(x, t)− ψ′′0(x, t)

]
φ′c(x−X) +

∫
φ′c(x−X)U ′[Φ(x, t)]

+ (1− Ẋ2)
∫
ψ′φ′′c − 2Ẋ

∫
ψ̇′φ′c

}
. (3.3.24)
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Next we move the term linear in Ẋ to the left-hand side of the equation and
multiply by 1 + ξ/M0 which allows us to write

d

dt

[
M0(1 + ξ/M0)

2Ẋ
]

= (1 + ξ/M0)

{
−
∫
v(x, t)

[
φ′c(x−X)F10[Φ,Φx] + φ′′c (x−X)F01[Φ,Φx]

]
+

∫ [
ψ̈0(x, t)− ψ′′0(x, t)

]
φ′c(x−X) +

∫
φ′c(x−X)U ′[Φ(x, t)]

+ (1− Ẋ2)
∫
ψ′φ′′c

}
, (3.3.25)

where we have made use of the fact that

ξ̇ =
∫
ψ̇′φ′c . (3.3.26)

Equation (3.3.25) is nothing more that Newton’s law for a particle with time-
dependent mass

M = M0(1 + ξ/M0)
2 . (3.3.27)

Therefore we see that one of the effects of the phonon field is to renormalize the
mass of the kink. This feature of the phonon field has already been noted in the
quantized theories for the unperturbed system [47]. The interpretation of the left-
hand side of Eq. (3.3.25) as being the time derivative of the kink momentum is
verified by examining the equation for Ẋ derived in Appendix A. Rewriting Eq.
(A.11) we have

M0(1 + ξ/M0)
2Ẋ = p+

∫
πψ′ + (1 + ξ/M0)A(X, t) , (3.3.28)

which states that the kink momentum equals the total momentum of the system p
minus the momentum of the phonon field (−

∫
πψ′) minus a momentum term due

to the background.
Equation (3.3.22) was derived by using the fact that Eqs. (3.3.2) and

(3.3.3) plus the constraints form a canonical transformation and therefore the
Dirac bracket of the dynamical variables with the Hamiltonian yields the equa-
tions of motion. An alternate method is available which uses the fact that in
Eqs. (3.3.2) and (3.3.3) we have a transformation in which the old coordinates
are expressible in terms of the new coordinates and therefore, one can derive the
equations of motion simply by taking the appropriate derivatives of Eqs. (3.3.2)
and subsituting them into Eq. (3.1.2). In fact, we can generalize Eq. (3.1.2) by
including a phenomenological damping term of the form

εΦ̇(x, t) .
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Unlike the “damping” terms in Eq. (3.3.22), this term is truly dissipative and may
be envisioned as arising from coupling the system to a heat bath.

Although substitution of Eq. (3.3.2) into Eq. (3.1.2) (see Appendix B)
yields the correct equations of motion more quickly and with less work than using
the canonical formalism, this in no way means that we can abandon the canoni-
cal transformation. A major reason for this is that the canonical structure allows
us to use the standard prescription of promoting canonical variables to operators
and the Poisson bracket to commutators when we wish to quantize the system
[45, 47]. In addition, when one works with phase space integrals as is the case in
Fokker-Planck (see Chapter 6) or Boltzmann approaches, having a canonical trans-
formation preserves the phase space volume element (for our transformation which
involves constraints, the Jacobian is actually the product of the delta functions
whose arguments are exactly the constraints in Eqs. (3.2.4) [47]).

3.4 The Perturbation Expansion

We now turn our attention to the task of obtaining an approximate solution of
Eq. (3.3.24) as a perturbation series. We assume that the perturbation v(x, t) is
proportional to some small parameter which we denote by λ. Since we are mainly
interested in the motion of the kink center of mass, we begin by expanding Eq.
(3.3.2). For these purposes, we assume that v(x, t), ψ(x, t) and ψ0(x, t) are all of
order λ. To obtain the expansion of Eq. (3.3.24) through order λ2, we make use
of the following Taylor series

F10[Φ(x+X, t),Φx(x+X, t)] =
∂F (φc, φ

′
c)

∂φc
+ χ(x, t)

∂2F (φc, φ
′
c)

∂2φ2
c

+ χ′(x, t)
∂2F (φc, φ

′
c)

∂φ′c∂φc
,(3.4.1)

F01[Φ(x+X, t),Φx(x+X, t)] =
∂F (φc, φ

′
c)

∂φ′c
+ χ′(x, t)

∂2F (φc, φ
′
c)

∂2φ′2c

+ χ(x, t)
∂2F (φc, φ

′
c)

∂φ′c∂φc
,(3.4.2)

where for notational convenience we have introduced

χ(x, t) = ψ(x, t) + ψ0(x+X, t) . (3.4.3)

Substituting Eqs. (3.4.1) and (3.4.2) into Eq. (3.3.24) we have, after collecting
terms

M0Ẍ =
1

(1 + ξ/M0)

{
−
∫
v(x+X, t)

[ d
dx
F (φc, φ

′
c)
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+ χ(x, t)
d

dx

∂F (φc, φ
′
c)

∂φc
+ χ′(x, t)

d

dx

∂F (φc, φ
′
c)

∂φ′c

]
+

∫
(ψ̈0(x, t)− ψ′′0(x, t))φ

′
c(x−X)) +

∫
φ′c(x−X)U ′[Φ(x, t)]

+ (1− Ẋ2)
∫
ψ′φ′′c − 2Ẋ

∫
ψ̇′φ′c

}
. (3.4.4)

Next we write the following Taylor series for U ′[Φ(x+X, t)]

U ′[Φ(x+X, t)] = U ′[φc(x, t)]+
1

2
χ(x, t)U ′′[φc(x, t)]+χ2(x, t)U ′′′[φc(x, t)] , (3.4.5)

where we have used our freedom to choose a normalization such that the following
are true

U ′[φ0] = 0 , U ′′[φ0] = 1 , (3.4.6)

where the potential U has its minimum at φ0. Combining all these terms we have

M0Ẍ = −
(
1− ξ

M0

)[∂V (X, t)

∂X
+ 2Ẋ

∫
ψ̇′φ′c + Ẋ2

∫
ψφ′′c

]

−
∫
v(x+X, t)

[
χ(x, t)

d

dx

∂F (φc, φ
′
c)

∂φc
+ χ′(x, t)

d

dx

∂F (φc, φ
′
c)

∂φ′c

]
+

1

2

∫
χ2(x, t)U ′′′[φc(x)]φ

′
c(x) , (3.4.7)

where the effective potential V (x, t) is defined by

V (X, t) = −
∫ [
v(x+X, t)F (φc, φ

′
c)− ψ̈0(x, t)φ

′
c(x−X)

]
. (3.4.8)

Equation (3.4.7) is valid through second order in λ. Keeping only the first order
terms in λ we have

M0Ẍ = −∂V (X, t)

∂X
− 2Ẋ

∫
ψ̇′φ′c − Ẋ2

∫
ψφ′′c . (3.4.9)

Although in principle one must know the phonon field ψ to lowest order in λ
before Eq. (3.4.9) can be solved, in practice the terms which involve the phonon
field are often small relative to the gradiant of the potential. In order to estimate
the magnitude of the phonon field, one must solve the first-order PDE for ψ which
is derived below. This in turn requires knowledge of the first-order kink motion.
Therefore in principle one must solve a set of coupled equations self-consistently.
To make progress without solving the coupled equations, one assumes that the ψ
field is small. This allows one to solve for the first-order kink motion

M0Ẍ = −∂V (X, t)

∂X
. (3.4.10)
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Given X(t) to lowest order one proceeds to solve the equation for the phonon field
(see below). Now one is in a position to check if the gradient term does indeed
dominant in Eq. (3.4.9). If this is the case, one may continue to higher order.
When the gradient and “phonon” terms are of the same order of magnitude, one
must solve the coupled equations self-consistently. This will be the case when the
size of the perturbation, that is λ, is much smaller than the initial velocity of the
kink. An alternate method involves making a perturbation expansion in both the
strength of the perturbation and the initial kink velocity.

A second-order PDE for ψ, valid to first order in the perturbation expansion
is derived in Appendix A and is given by

ψ̈(x, t)− ψ′′(x, t) + ψ(x, t)U ′′(φc) = (1− Pφc)
{[

1− U ′′(φc)
]
ψ0(x+X, t)

+ v(x+X, t)
[
F10[φc, φ

′
c]− F10[0, 0]

]
− d

dx

[
v(x+X, t)

(
F01[φc, φ

′
c]− F01[0, 0]

)]}
. (3.4.11)

Since the left-hand side of Eq. (3.4.11) is exactly the small oscillations operator of
Eq. (3.1.6), we can write the a solution for ψ(x, t) is terms of a Green function

ψ(x, t) =

∞∫
−∞

dx′
∞∫

−∞

dt′G(x, x′, t− t′)I(x′, t′) , (3.4.12)

where

G(x, x′, τ) =
N∑
i=1

f ∗b,i(x)fb,i(x
′)

∞∫
−∞

dωeiωτ

2π(ω2
b,i − ω2)

+

∞∫
−∞

f ∗k (x)fk(x
′)

∞∫
−∞

dωeiωτ

2π(ω2
k − ω2)

, (3.4.13)

with τ = t − t′ and I(x, t) is the right-hand side of Eq. (3.4.11). The Green
function in Eq. (3.4.13) contains all of the bound states including the translation
mode. At first this seems to contradict the constraint condition in Eq. (3.3.6)
because including the translation mode fb,1(x) in the Green function means that
ψ(x, t) could have a portion proportional to the translation mode, namely

ψ(x, t) = −f ∗b,1(x)
∞∫

−∞

dx′
∞∫

−∞

dt′fb,1(x
′)I(x′, t′)

∞∫
−∞

dωeiωτ

2π(ω2
k − ω2)

. (3.4.14)

However this is not the case because the expression I(x′, t′) is manifestly orthogonal
to the translation mode and therefore we will find no coefficient of the translation
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mode. Analytic expressions for the Green function defined in Eq. (3.4.13) in
terms of modified Lommel functions of two variables are derived in Chapter 4 for
the sine-Gordon, Phi-4 and Double Quadratic potentials [87].

Although one can in principle calculate the ψ field using the Green function,
one finds in many cases that it is more cost effective to solve the partial differential
equation (3.4.11) directly. One might question the utility of the present perturba-
tion theory if one must, in the end, numerically solve a PDE for ψ when numerical
integration of Eq. (3.1.2) solves the entire problem. From a purely computational
point of view we could argue that Eq. (3.1.2), unlike Eq. (3.4.11), is a strongly
nonlinear PDE and therefore, although there are subroutine packages available
which can handle these equations [88], they are often quite costly. Furthermore,
although Eq. (3.4.1) may be cumbersome to use in practice, it can be used to de-
duce general features of the ψ field. For example, consider the situation in which
a kink is incident upon a time-independent localized perturbation and scatters to
X = ±∞ (see §5.3). In this case, ψ0 is time independent and the only time de-
pendence which enters the terms ψ0(x+X, t) and v(x+X, t) occurring in I(x, t)
is through X(t). If the kink scatters to X = ±∞, for large times X(t) will vary as
V0t to first order. Since v(x) is localized, both v and ψ0 will be localized in their
first argument. Therefore for large values of t, ψ0(x

′+X(t′)) and v(x′+X(t′)) will
contribute to the integral in Eq. (3.4.1) only for small values of t′. Using the fact
that the asymptotic time dependence for the Green function is (see §4.2)

G(x, x′, t− t′) ≈ 1√
t− t′

, (3.4.15)

one can write

ψ(x, t) ≈
∞∫

−∞

dx′
∞∫
t

dt′
I(x′, t′)√
t− t′

, (3.4.16)

≈ 1√
t

∞∫
−∞

dx′
∞∫
t

dt′
I(x′, t′)√
1− t′/t

. (3.4.17)

Therefore for fixed x, the ψ field tends to zero for large times, that is to say, there
are no long-lived extended phonons generated to this order in the perturbation
theory. Similar results have been obtained by Wada and Schriefer [67] and Ogata
and Wada [68] when they consider the scattering of a phonon packet (analogous to
our ψ0 field) with a kink. They find that the kink only undergoes a phase shift to
lowest order and that no new phonons are emitted. The major difference between
their work and ours is that we have a force which maintains the “phonon” packet’s
shape, however it appears that the effect of this force makes itself felt only in higher
order.
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Although this result is itself interesting, it has larger implications for the
second-order kink motion. Consider the time-dependent second-order terms on
the right hand side of Eq. (3.4.7). All of these terms involve either ψ(x, t), which
goes to zero as t→∞, or ψ0(x+X(t), t). For the scattering situation considered
here, X(t) → ∞ as t → ∞; therefore due to the assumed localized nature of the
perturbation, ψ0(x + X(t), t) also goes to zero for large times. Since we already
know that the effective potential is zero for large X, the force on the kink for
large times is zero. Therefore after the kink has interacted with the perturbation
it travels at constant velocity. If some energy has been given to the phonon field
this velocity should be less than the initial kink velocity.

The question of the final kink velocity may be attacked more generally by
obtaining an approximate first integral of Eq. (3.4.7). To this end we note that
given the background field ψ0, the phonon field ψ, and the first order solution to
the kink center of mass motion (i.e. given X(1)(t)), the right hand side of Eq.
(3.4.7), excluding the Ẋ term, can be written as a time dependent force denoted
by F (t). Also noting that the coefficient of the Ẋ term is precisely 2ξ̇, we write

(M0 + ξ(t))Ẍ + 2ξ̇Ẋ = F (t) , (3.4.18)

where we have also assumed that the Ẋ2 term is negligible. Multiplying by the
integrating factor (1 + ξ/M0) Eq. (3.4.18) may be rewritten as

d

dt

[
M0(1 + ξ/M0)

2Ẋ
]

= (1 + ξ/M0)F (t) . (3.4.19)

Integrating this equation from t = −∞ to t = ∞ we obtain

(
1+

ξ(∞)

M0

)
Ẋ(∞)−

(
1+

ξ(−∞)

M0

)
Ẋ(−∞) =

1

M0

∞∫
−∞

dt′
(
1+

ξ(t′)

M0

)
F (t′) . (3.4.20)

For the special case in which the perturbation is localized, ξ(±∞) = 0 which allows
us to reduce Eq. (3.4.20) to

Ẋ(∞)− Ẋ(−∞) =
1

M0

∞∫
−∞

dt′
(
1 +

ξ(t′)

M0

)
F (t′) . (3.4.21)

These forms allow one to deduce the final kink velocity by performing one numerical
integral (this is a very recent result and has not yet been implemented). The
expression for the final velocity given in Eq. (3.4.20) should prove to be a good
check on the numerical integation of Eq. (3.4.7).



Chapter 4

Nonlinear Klein-Gordon Green
Functions

We conclude the formal derivation of the perturbation theory by calculating the
Green functions needed to compute the phonon field ψ for the sine-Gordon, φ4 and
double quadratic potentials. Recall from section 3.4 that ψ may be expressed as

ψ(x, t) =

∞∫
−∞

dx′
∞∫

−∞

dt′G(x′, x′, t− t′)I(x′, t′) ,

where I(x′, t′) is an inhomogeneous term which depends on the perturbation. Al-
though this expression for ψ is easy enough to write down, one must ask whether or
not it is useful in practice. As mentioned in section 3.4, for the perturbations con-
sidered so far we have found that performing the integrals in Eq. (3.4.12) requires
too much computation time ( I estimate that to compute ψ to 3 significant digits
for 1000 values of x and t would require roughly 1 hour of Cray 1 time). This com-
putation requires a lot of time because the Green function oscillates rapidly in t′

over the range of times t′ for which the inhomogeneous term I(x′, t′) is appreciable.
When one encounters this type of behavior one immediately considers transform-
ing to Fourier space where the Green functions would decay rapidly. This does not
help in our case because we have imposed retarded boundary conditions on the
Green functions which evidence themselves by the appearance of the step function
prefactor θ(t − t′). Next one considers the use of the Laplace transform. When
one sees the rather complex analytic form the Green functions take it appears at
first that this approach is not possible. It is indeed remarkable that we can obtain
analytic forms for the Laplace transform of the Green functions (see section 4.3);
however, one is then faced with the nontrivial task of numerically evaluating the
Bromwich integral. Although these methods have not yet proved to be useful, it is
quite possible that for special perturbations they could lead to analytic expressions
for the phonon field.
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In the following we derive the Green functions for the sine-Gordon, φ4 and
double quadratic nonlinear potentials. One might ask whether other nonlinear
potentials could be examined with similar techniques. Since the sine-Gordon and
φ4 potentials are the first two of an infinite sequence of nonlinear potentials [49] it
is conceivable that this sequence of potentials would be tractable. However, since
the phonon waveforms are known analytically [49], we can see that the amount of
work needed for each successive potential in the sequence increases linearly, so that
one would need to develop a method which applied to the general potential. In
addition, it might be desirable to apply different boundary conditions such as peri-
odic boundary conditions on the finite line. However for now we content ourselves
with the retarded conditions as applied to the potentials mentioned above.

4.1 Analytic Evaluation of the Green functions

For the set {fb,i(x), fk(x)} of solutions satisfying the “phonon” equation (3.1.8),
we define the full Green function as:

G(x, x′, τ) =
∑

bound states

f ∗b,i(x)fb,i(x
′)

∞∫
−∞

dωeiωτ

2π(ω2
i − ω2)

+

∞∫
−∞

dk f ∗k (x)fk(x
′)

∞∫
−∞

dωeiωτ

2π(ω2
k − ω2)

, (4.1.1)

where τ ≡ t−t′. Using the completeness relation (3.1.12), and the fact that the set
{fb,i(x), fk(x)} satisify equation (3.1.8), one can show that the full Green function
satisfies the usual equation:

{∂tt − ∂xx + U ′′[φk(x)]}G(x, x′, τ) = δ(x− x′)δ(τ) . (4.1.2)

Once a set of boundary conditions is chosen the ω integral in (4.1.1) may
be evaluated without choosing a particular set of {fb,i(x), fk(x)}. In this paper we
choose retarded boundary conditions obtained by moving both of the poles in the
ω integral above the real ω axis. Carrying out the ω integral yields:

G(x, x′, τ) = Gb(x, x
′, τ) +Gp(x, x

′, τ) , (4.1.3)

where Gb(x, x
′, τ) and Gp(x, x

′, τ) are the bound state and phonon contributions
given by:

Gb(x, x
′, τ) = θ(τ)

{
τf ∗b,1(x)fb,1(x

′) +
N∑
i=2

f ∗b,i(x)fb,i(x
′)

sin(ωiτ)

ωi

}
, (4.1.4)

Gp(x, x
′, τ) = θ(τ)

∞∫
−∞

dkf∗k (x)fk(x
′)

sin(ωkτ)

ωk
, (4.1.5)
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with N the number of bound states [if N=1 the second term is omitted from Eq.
(4.1.4)] and θ(τ) is the Heaviside step function,

θ(τ) =
{

0, −∞ < τ < 0
1 0 ≤ τ <∞ (4.1.6)

In order to obtain explicit forms for these contributions to the Green function,
one must insert the appropriate set of linearized solutions into Eqs. (4.1.4) and
(4.1.5). As examples, we evaluate the phonon contribution for the SG, φ4 and DQ
potentials.

4.1.1 The sine-Gordon Potential

Since the bound state contribution (4.1.4) is already expressed in terms of known
functions, we turn to the evaluation of the phonon contribution given in Eq. (4.1.5).
Inserting the functions f(x) from the SG column of Table 3.1 into Eq. (4.1.5) we
have, after collecting common terms,

GSG
p (x, x′, τ) = θ(τ){I1 + β2I2 + β3sgn(z)I3} , (4.1.7)

where

I1 =
1

π

∞∫
0

dk√
1 + k2

cos(|z|k) sin(τ
√

1 + k2) ,

I2 =
1

π

∞∫
0

dk

(1 + k2)
3
2

cos(|z|k) sin(τ
√

1 + k2) ,

I3 =
1

π

∞∫
0

dk

(1 + k2)
3
2

k sin(|z|k) sin(τ
√

1 + k2) , (4.1.8)

with the definitions

τ ≡ t− t′ , z ≡ x− x′, β2 ≡ tanh(x) tanh(x′)− 1, β3 ≡ tanh(x′)− tanh(x) .
(4.1.9)

Since I2 is uniformly convergent for all |z| and τ , we may differentiate with respect
to |z| to obtain

I3 = − dI2
d|z|

. (4.1.10)

Therefore only I1and I2 need to be evaluated. These integrals may be evaluated
by considering the integral I(µ) given by

I(µ) =
1

π

∞∫
0

dk√
µ2 + k2

cos(|z|k) sin(τ
√
µ2 + k2) , (4.1.11)

=
θ(τ − |z|)

2
J0(µ

√
τ 2 − z2) , (4.1.12)
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where the integral is found in the tables [89]. The special case I(1), is precisely the
integral I1. Since the derivative of the integrand of Eq. (4.1.11) is a continuous
function of both µ and k we may differentiate I(µ) with respect to µ to obtain

I2 = lim
µ→1

{
−dI(µ)

dµ
+

τ

2π

∞∫
−∞

dk

µ2 + k2
cos(|z|k) cos(τ

√
µ2 + k2)

}
, (4.1.13)

=
θ(τ − |z|)

2

√
τ 2 − z2J1(

√
τ 2 − z2)

+
τ

2π

∞∫
−∞

dk

1 + k2
cos(|z|k) cos(τ

√
1 + k2) . (4.1.14)

In the integral remaining in (4.1.14) we substitute k = sinh(u), which gives us

τ

2π

∞∫
−∞

dk

1 + k2
cos(|z|k) cos(τ

√
1 + k2) (4.1.15)

=
τ

2π

∞∫
−∞

du

cosh(u)
cos[|z| sinh(u)] cos[cosh τ(u)] , (4.1.16)

=
τ

4π

∞∫
−∞

du

cosh(u)

{
cos[|z| sinh(u) + τ cosh(u)]

+ cos[τ cosh(u)− |z| sinh(u)]
}
, (4.1.17)

=
τ

2π

∞∫
−∞

dueu

e2u + 1

{
cos[aeu + be−u] + cos[ae−u + beu]

}
, (4.1.18)

=
τ

2π

∞∫
0

dt

t2 + 1

{
cos[at+

b

t
] + cos[

a

t
+ bt]

}
, (4.1.19)

=
τ

π

∞∫
0

dt

t2 + 1
cos[at+

b

t
] , (4.1.20)

where in passing from (4.1.19) to (4.1.20) we have let t→ 1/t in the second cosine
term and have defined

a ≡ τ + |z|
2

, (4.1.21)

b ≡ τ − |z|
2

. (4.1.22)

For b < 0 the integral in (4.1.20) is found in the tables [90] to be

1

π

∞∫
0

dt

t2 + 1
cos
[
at− |b|

t

]
=

1

2
e(a−b). (4.1.23)
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For b > 0 the integral in Eq. (4.1.20) may be expressed in terms of “modified”
Lommel functions of two variables [91]. The “modified” functions, namely Lommel
functions in which the first argument is pure imaginary, have not been found in the
literature. Hence we introduce the notation Λn(w, s) and Ξn(w, s) for the modified
functions and give their series representations in terms of Bessel functions:

Λn(w, s) ≡ i−nUn(iw, s) =
∞∑
m=0

(w
s

)2m+n
J2m+n(s) , (4.1.24)

Ξn(w, s) ≡ i−nVn(iw, s) =
∞∑
m=0

(w
s

)−2m−n
J−2m−n(s) , (4.1.25)

With these definitions, we write for b > 0

1

π

∞∫
0

dt

t2 + 1
cos[at+

|b|
t

] =
1

2
e−(a−b) − Λ1(w, s) , (4.1.26)

where

s ≡
√
τ 2 − z2 , (4.1.27)

w ≡ τ − |z| . (4.1.28)

Combining (4.1.23) and (4.1.26) we have for I2 :

I2 =
1

2
τe−|z| + θ(τ − |z|)

{sJ1(s)

2
− τΛ1(w, s)

}
, (4.1.29)

Using Eq. (D.14) from Appendix D we differentiate (4.1.29) with respect to |z|
which results in

dI2
d|z|

= −1

2
τe−|z| +

θ(τ − |z|)
2

{
−(τ + |z|)J0(s) + 2τΛ0(w, s)

}
. (4.1.30)

In Eqs. (4.1.29) and (4.1.30), I2 and its derivative appear to have a term
which grows linearly in τ , but this is impossible in view of the integral represen-
tations of Eqs. (4.1.8). Using asymptotic expressions for the modified Lommel
functions, we shall show in section 4.2 that the large τ dependence is actually an
inverse square root.

Writing the phonon contribution as

GSG
p (x, x′, τ) =θ(τ)

{
I1 + β2I2 − β3sgn(z)

dI2
d|z|

}
, (4.1.31)

we notice that with I1, I2 and dI2
d|z| given by Eqs. (4.1.12), (4.1.29) and (4.1.30),

there is a term which does not vanish outside of the “light-cone” (i.e. a term which
does not have θ(τ − |z|) as a prefactor), namely

θ(τ)
τe−|z|

2

{
β2 + sgn(z)β3

}
. (4.1.32)
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One can show that this term may be rewritten as

−θ(τ)τf ∗b,1(x)fb,1(x′). (4.1.33)

Hence, when the bound state contribution is added to Eq. (4.1.31) to obtain
the full Green function, we are left with an expression which vanishes identically
outside of the light-cone:

GSG(x, x′, τ) =
θ(τ − |z|)

2

{
J0(s) + β2[sJ1(s)− 2τΛ1(w, s)]

− β3sgn(z)[−(τ + |z|)J0(s) + 2τΛ0(w, s)]
}
, (4.1.34)

explicitly demonstrating the retarded boundary conditions applied.

4.1.2 The φ4 Potential

With a slight generalization, the techniques used to evaluate the SG Green function
may be applied to the φ4 potential. Proceeding along the same lines, we write the
phonon contribution as:

Gφ4

p (x, x′, τ) =
θ(τ)

4

{
γ0I0 − γ1sgn(z)

dI0
d|z|

+ γ2I2 + γ3sgn(z)
dI2
d|z|

+ I4
}
, (4.1.35)

where I2 and dI2
d|z| are given in Eqs. (4.1.29-30) and

I0 =
1

π

∞∫
0

dk
cos(|z|k) sin(τ

√
1 + k2)

(1 + k2)
3
2 (1 + 4k2)

, (4.1.36)

I4 =
1

π

∞∫
0

dk
(1 + 4k2) cos(|z|k) sin(τ

√
1 + k2)

(1 + k2)
3
2

, (4.1.37)

= 2θ(τ − |z|)J0(s)− 3I2 , (4.1.38)

γ0 ≡ 9{tanh2(y) tanh2(y′)− tanh(y) tanh(y′)} ,
γ1 ≡ 18{tanh(y) tanh2(y′)− tanh2(y) tanh(y′)} ,
γ2 ≡ 9 tanh(y) tanh(y′)− 3 tanh2(y)− 3 tanh2(y′) ,

γ3 ≡ 6 tanh(y)− 6 tanh(y′) , (4.1.39)

y ≡ x

2
, y′ ≡ x′

2
, (4.1.40)

where Eq. (4.1.12) has been used to simplify Eq. (4.1.37). The remaining integral,
I0, may be reduced by partial fractions to

I0 =
4

3π

∞∫
0

dk
cos(|z|k) sin(τ

√
1 + k2)√

1 + k2 (1 + 4k2)
− I2

3
, (4.1.41)
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=
4

3
I01 −

1

3
I2 , (4.1.42)

with I01 defined by

I01 =
1

π

∞∫
0

dk
cos(|z|k) sin(τ

√
1 + k2)√

1 + k2 (1 + 4k2)
. (4.1.43)

To evaluate I01 we again substitute k = sinh(u) which gives us

I01 =
1

π

∞∫
0

du
cos[|z| sinh(u)] sin[τ cosh(u)]

1 + 4 sinh2(u)
, (4.1.44)

=
1

2π

∞∫
0

tdt

t4 − t2 + 1
sin
[
at+

b

t

]
, (4.1.45)

where in going from Eq. (4.1.43) to (4.1.44) substitutions similar to those made in
Eqs. (4.1.15-20) have been made. Factoring the denominator of Eq. (4.1.45), we
define

β2
± =− t2± =−β∓ =

−1∓ i
√

3

2
, (4.1.46)

where t2± are the roots of t4 − t2 + 1. Using partial fractions, we may write Eq.
(4.1.44) as

I01 =
1

2πi
√

3

{ ∞∫
0

tdt

t2 + β2
+

sin
[
at+

b

t

]
−

∞∫
0

tdt

t2 + β2
−

sin
[
at+

b

t

]}
, (4.1.47)

=
−1

2i
√

3
[J(β2

−)− J∗(β2
−)] , (4.1.48)

=
−1√

3
=[J(β2

−)] , (4.1.49)

where = denotes the imaginary part and

J(β2) = − 1

π

∞∫
0

tdt

t2 + β2
sin
[
at+

b

t

]
. (4.1.50)

The integral defined in Eq. (4.1.49) is a slight generalization of Hardy’s integrals
for Lommel functions [91, 92]. The evaluation of J(β2) follows Hardy’s with a few
modifications and is presented in Appendix C for completeness. From Eq. (C.21)
in Appendix C we have

J(β2
−) =

1

2
e
−(aβ−− b

β−
) − θ(b)Λ2

[ 2b

β−
, 2
√
ab
]
, (4.1.51)
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=
1

2
e−

1
2
(|z|+i

√
3τ) − θ(τ − |z|)Λ2(β+w, s) . (4.1.52)

Therefore we have for I01 :

I01 =
1

2
√

3
e−

|z|
2 sin(ω2τ) +

θ(τ − |z|)√
3

=[Λ0(β+w, s)] , (4.1.53)

where

ω2 ≡
√

3

2
, (4.1.54)

and we have used

=[Λ2(β+w, s)] ==[Λ0(β+w, s) + J0(s)] ==[Λ0(β+w, s)] . (4.1.55)

From Eq. (4.1.35) we see that we need a derivative of I0, and hence I01, with
respect to |z|. Using Eq. (D.14) and Eqs. (D.26) from Appendix D we have

dI01

d|z|
=

−1

4
√

3
e−

|z|
2 sin(ω2τ)−

θ(τ − |z|)
2
√

3
=[Λ1(β+w, s)] , (4.1.56)

where
β2

+ + 1

β+

= 1 , (4.1.57)

has also been used. Collecting all of the pieces, we write for the phonon contribu-
tion:

Gφ4

p (x, x′, τ) =
θ(τ)

4

{4

3
γ0I01 −

4

3
γ1sgn(z)

dI01

d|z|
+ [γ2 −

γ0

3
− 3]I2

+ sgn(z)[
γ1

3
+ γ3]

dI2
d|z|

+ 2θ(τ − |z|)J0(s)
}
. (4.1.58)

As in the sine-Gordon case one may show that when we combine the “non-retarded”
pieces of the phonon contribution, we get exactly the negative of the bound state
contribution; specifically we have

1

8
[γ2 −

γ0

3
− 3]τe−

|z|
2 − sgn(z)

8
[
γ1

3
+ γ3]τe

− |z|
2 = −τf ∗b,1(x)fb,1(x′) , (4.1.59)

1

6
√

3
e−

|z|
2 sin(ω2τ)γ0 +

1

12
√

3
e−

|z|
2 sin(ω2τ)sgn(z)γ1 = −sin(ω2τ)

ω2

f ∗b,2(x)fb,2(x
′).

(4.1.60)
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With the “non-retarded” portion cancelled by the bound state contribution, we
have for the full Green function

Gφ4

(x, x′, τ) = θ(τ − |z|)
{

1

3
√

3
=[γ0Λ0(β+w, s) +

1

2
γ1sgn(z)Λ1(β+w, s)]

+
1

8
[γ2 −

γ0

3
− 3][sJ1(s)− 2τΛ1(w, s)]

+
sgn(z)

8
[
γ1

3
+ γ3][−(τ + |z|)J0(s) + 2τΛ0(w, s)] +

1

2
J0(s)

}
. (4.1.61)

4.1.3 The Double Quadratic Potential

As a final example, we evaluate the DQ Green function. The phonon contribution
in this case is

GDQ
p (x, x′, τ) =

θ(τ − |z|)
2

{
I1 −

[
I2(z+)− dI2(z+)

dz+

]}
, (4.1.62)

where I1 is given in Eq. (4.1.12) [with µ = 1] and I2(z+) is given in Eq. (4.1.29)
with |z| replaced by z+ ≡ |x|+ |x′|. Factoring out the non-retarded piece we have

GDQ(x, x′, τ) =
θ(τ − |z|)

2

{
J0(s)− s+J1(s+) + 2τΛ1(w+, s+)

+ (τ + z+)J0(s+) + 2τΛ0(w+, s+)
}
, (4.1.63)

with

z+ ≡ |x|+ |x′| , (4.1.64)

w+ ≡ τ − z+ , (4.1.65)

s+ ≡
√
τ 2 − z2

+ . (4.1.66)

All three of the Green functions derived above have been checked against numeri-
cal integration. Over a large range of values for x, x′ and τ , we find agreement to
8 significant digits, which is presently the accuracy of our routines which compute
the modified Lommel functions. In addition we have applied the small oscillation
operator [see Eq. (4.1.2)] on each of the analytic expressions which, after some
tedious algebra, yield the appropriate delta functions. To obtain a final check, we
note that by using the orthogonality relation in Eq. (3.1.13) and linear superposi-
tion, we see that phonon contribution to the Green functions must be orthogonal
to the bound state(s). Numerical integrations confirm this property for all three
Green functions.
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4.2 Asymptotic Behavior

To obtain asymptotic expressions (τ →∞) for the Green functions, we must first
find the appropriate limits of the modified Lommel functions. In Appendix E we
examine Λ0(w, s) and Λ1(w, s) in the limit as s→∞ while w/s→ 1, which, when
w and s are related to τ and z by Eqs. (4.1.27) and (4.1.28), corresponds to τ � |z|.
This limit is interesting because the expressions for the phonon contributions to the
Green functions have a term linear in τ which, in view of the integral expressions,
must be cancelled by the other terms.

Since all of the Green functions are expressible in terms of the integrals
I01, I2 and their derivatives with respect to |z| we consider the asymptotic expres-
sions for these quantities first and then combine them to obtain the limits for the
Green functions.

To apply the results of Appendix E we must first recast these results in
terms of the variables τ and z which are related to w and s by

w = β(τ − |z|) ,
s =

√
τ 2 − z2 , (4.2.1)

where β is either unity or β+. From Eqs. (E.31) and (E.32) of Appendix E, we
have for β = 1,

Λ0(w, s) ≈ J0(s)

2
+
e−|z|

2
+
|z|
2τ

√
2

πs

{
cos(s− π

4
)
[
1 +

2R4(1, κ)

(8s)2

]
sin(s− π

4
)
2R2(1, κ)

8s

}
+O(τ−

9
2 ) , (4.2.2)

Λ1(w, s) ≈ e−|z|

2
− s

2τ

√
2

πs

{
cos(s− π

4
)
[2[R2(1, κ)− 2]

8s
− 40R4(1, κ)

(8s)3

]
−sin(s− π

4
)
[
1 +

2[R4(1, κ) + 12R2(1, κ)]

(8s)2

]}
+O(τ−

9
2 ) , (4.2.3)

where κ ≡ w/s, R2 and R4 are defined in Eqs. (E.29), (E.30), and we have used

ε(1, κ) =
|z|
s

(4.2.4)

σ1(1, κ) =
τ

2s
, (4.2.5)

σ2(1, κ) =
τ

2|z|
, (4.2.6)



53

σ1(1, κ)√
1 + ε2(1, κ)

=
1

2s
, (4.2.7)

ε(1, κ)σ2(1, κ)

1 + ε2(1, κ)
=

s

2τ
. (4.2.8)

Inserting the expression for Λ1(w, s) in Eq. (4.2.3) into Eq. (4.1.29), we see that
the linear τ dependence exactly cancels (for large τ and τ � |z|, both θ(τ − |z|)
and θ(τ) are unity), leaving us with:

I2 ≈ sJ1(s)

2
+
s

2

√
2

πs

{
cos(s− π

4
)
[2[R2(1, κ)− 2]

8s
− 40R4(1, κ)

(8s)3

]
−sin(s− π

4
)
[
1 +

2[R4(1, κ) + 12R2(1, κ)]

(8s)2

]}
+O(τ−

7
2 ) . (4.2.9)

In Eq. (4.2.9), I2 now seems to have a
√
s and therefore

√
τ dependence, however

this again exactly cancels when J1(s) is expanded in its asymptotic series resulting
in:

I2 ≈ 1

2

√
2

πs

{
sin(s− π

4
)
[15− 4[R4(1, κ) + 12R2(1, κ)]

16(8s)

]
+ cos(s− π

4
)
[2R2(1, κ)− 1

8
+

5[21/16−R4(1, κ)]

(8s)2

]}
+O(τ−

7
2 ) .(4.2.10)

Similarly we have

dI2
d|z|

≈ |z|
2

√
2

πs

{
cos(s− π

4
)
[9 + 4R2(1, κ)

2(8s)2

]
+ sin(s− π

4
)
[2R2(1, κ)− 1

(8s)

] }
+O(τ−

7
2 ) . (4.2.11)

Next we turn to the I01 expression which involves modified Lommel functions
evaluated at β+w and s. With β = β+ , ε(β, κ), σ1(β, κ) and σ2(β, κ) become

ε(β+, κ) =
|z|+ i

√
3τ

2s
, (4.2.12)

σ1(β+, κ) =
τ + i

√
3 |z|

4πs
, (4.2.13)

σ2(β+, κ) =
κ

2s

(τ + i
√

3|z|)(τ + |z|)
|z|+ i

√
3τ

. (4.2.14)
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Inserting Eqs. (4.2.12-14) into Eqs. (E.31) and (E.32), we have

Λ0(β+w, s) ≈ 1

2
e−

|z|
2 eiω2t +

1

2

1√
1 + ε2(β+, κ)

√
2

πs

{
cos(s− π

4
)
[
1 +

2R4(β+, κ)

(8s)2

]

+ sin(s− π

4
)
2R2(β+, κ)

(8s)

}
+O(τ−

7
2 ) , (4.2.15)

Λ1(β+w, s) ≈ 1

2
e−

|z|
2 e−iω2t − 1

2

1√
1 + ε2(β+, κ)

√
2

πs
×

×
{

cos(s− π
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[2[R2(β+, κ)− 2]
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− 40

R4(β+, κ)

(8s)3

]
− sin(s− π

4
)
[
1 +

2[R4(β+, κ) + 12R2(β+, κ)]

(8s)2

]}
+O(τ−

9
2 ) , (4.2.16)

where we have used

σ1(β+, κ)√
1 + ε2(β+, κ)

=
1

2
, (4.2.17)

ε(β+, κ)σ2(β+, κ)√
1 + ε2(β+, κ)

=
1

2
, (4.2.18)

When Eq. (4.2.15) is inserted into the expression for I01, the oscillatory term in τ
cancels leaving us with

I01 ≈ 1

2
√

3
=
{

1√
1 + ε2(1, κ)

√
2

πs

[
cos(s− π

4
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(8s)2
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]}
+O(τ−

7
2 ) , (4.2.19)

and

dI2
d|z|

≈ 1

2
√

3
=
{

1√
1 + ε2(1, κ)

√
2

πs

[
cos(s− π

4
)
(2[R2(β+, κ)− 2]
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− sin(s− π

4
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(
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2[R4(β+, κ) + 12R2(β+, κ)]

(8s)2

)]}
+O(τ−

7
2 ) , (4.2.20)

Now all of the contributions are at hand to obtain, through O(τ−
7
2 ), the asymptotic

forms for the Green functions. However, since the expressions are lengthy and not



55

particularly illuminating, we list only the leading terms. Due to the simple analytic
form of the bound state contribution, we list only the phonon portions:

GSG
p (x, x′, τ) ≈

√
2

πs

{
cos(s− π

4
) +

1

8s
sin(s− π

4
)

}
+O(τ−

5
2 ) , (4.2.21)

Gφ4
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2 ) , (4.2.22)

GDQ
p (x, x′, τ) ≈

√
2

πs
cos(s− π

4
)− 1

2

√
2

πs+

cos(s+ −
π

4
)
[2R2(1, κ+)− 1

8

]
+O(τ−

3
2 ) ,

(4.2.23)
where in Eq. (4.2.23), κ+ ≡ w+/s+ .

One may notice that although we have shown that there is no linear τ term
in the phonon contributions to the Green functions, the full Green functions have
a linear τ term due to the first bound state, namely,

θ(τ)τf ∗b,i(x)fb,i(x
′) . (4.2.24)

This term may be understood by realizing that when computing the response of
a soliton to a perturbation, the effect of this term is to produce a coefficient of
the translation mode fb,1(x) which increases with time. Therefore, the soliton will
move from its initial position as time progresses. Hence in this case, the linear
term is required to describe the translation of the soliton.

The secularity referred to in the introduction is made evident by the linear
τ behavior in the coefficient of the translation-mode contribution to the full Green
function. Indeed, the use of the full Green function in a perturbation theory of
kink dynamics in the presence of external influences is equivalent to the procedure
introduced by Fogel et al.[37]. The use of the collective-coordinate method avoids
the secularity associated with the translation mode since only the “phonon” part of
the Green function is employed (together with the contribution from other bound
states, if any (N ≥ 2)).

4.3 Laplace Transform of the SG Green function

As mentioned in the beginning of this chapter, we can obtain analytic forms for
the Laplace transform of the Green functions. In the interest of brevity we present
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only the transformation for the SG Green functions although the methods below
also apply to the other models (φ4 and DQ). From Eq. (4.1.34) we see that
Laplace transform of the SG Green function is made up of a sum of the Laplace
transform of several Bessel functions plus the Laplace transform of the modified
Lommel functions. The Bessel function transforms are easily found in the tables
[93] or may be written as derivatives of known transforms and therefore we merely
present these results. Defining the Laplace transform of a function F (τ) to be

F̄ (s̄) = L[F (τ)] ≡
∞∫
0

dτe−s̄τF (τ) , (4.3.1)

we easily obtain the following:

L
[
θ(τ − |z|)J0(

√
τ 2 − |z|2)

]
=
e−|z|

√
s̄2+1

√
s̄2 + 1

, (4.3.2)

L
[
θ(τ − |z|)

√
τ 2 − |z|2J1(

√
τ 2 − |z|2)

]
=

[
1√
s̄2 + 1

+ |z|
]
e−|z|

√
s̄2+1

s̄2 + 1
(4.3.3)

L
[
τθ(τ − |z|)J0(

√
τ 2 − |z|2)

]
=

[
1√
s̄2 + 1

+ |z|
]

s̄√
s̄2 + 1

e−|z|
√
s̄2+1

√
s̄2 + 1

(4.3.4)

With these expressions in hand it remains to compute the Laplace transform of
the modified Lommel functions.

4.3.1 Laplace Transform of θ(τ − |z|)Λn(w, s)

Recalling the definition for the modified Lommel functions of two variables, we
write for Λn(w, s)

Λn(w, s) =
∞∑
m=0

(√√√√τ − |z|
τ + |z|

)n+2m

Jn+2m(
√
τ 2 − |z|2) . (4.3.5)

Since we always have τ > |z|, this sum converges uniformly and therefore in taking
the Laplace transform of the sum we can interchange the order of integration
and summation. Therefore we are led to consider the Laplace transform of the
summand in Eq. (4.3.5) which is found in the tables [94] to be

L
[(√√√√τ − |z|

τ + |z|

)n+2m

Jn+2m(
√
τ 2 − |z|2)

]
=

e−|z|
√
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√
s̄2 + 1(

√
s̄2 + 1 + s̄)n+2m

. (4.3.6)
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Therefore

L[θ(τ − |z|)Λn(w, s)] =
∞∑
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2s̄
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where in evaluating the sum I have used the fact that when doing an inverse
Laplace transform, <(s̄) > 0 and therefore the sum converges uniformly. Now all
of the components are at hand to obtain the expression for the Laplace transform
of the SG Green function. In doing the algebra, quite a bit of cancellation occurs
leaving us with a remarkably simple expression for the Laplace transform

ḠSG(x, x′; s̄) ≡ L[G(x, x′, τ)]

=
e−|z|

√
s̄2+1

2

{
1√
s̄2 + 1

− β2

s̄2
√
s̄2 + 1

− β3sgn(z)

s̄2

}
. (4.3.8)

4.3.2 Bromwich Representation for ψ(x, t)

The derivation of the Laplace transform is not merely an academic execise as it
may prove useful for the numerical evaluation of the phonon field. To see that this
is the case we now substitute the inverse Laplace representation of the SG Green
function into the integral expression for ψ given in Eq. (3.4.12)

ψ(x, t) =

∞∫
−∞

dx′
∞∫

−∞

dt′
1

2πi

c+i∞∫
c−i∞

ds̄ es̄τ ḠSG(x, x′; s̄)I(x′, t′) (4.3.9)

=
1

2π

∞∫
−∞

dx′
∞∫

−∞

dy

∞∫
−∞

dt′ ḠSG(x, x′; c+ iy)e−(c+iy)(t′−t)I(x′, t′) ,(4.3.10)

where c is a positive real constant which is greater than 0 (i.e. this is the real
part of the “right-most” pole of ḠSG(x, x′; s̄)). To make further analytic progress,
we consider a specific perturbation, namely we choose a linear coupling function
F = Φ and a time-independent perturbation which is well localized in space

v(x) = λ
{
e−(x−x0)2 − e−(x+x0)2

}
, (4.3.11)

(this is one of the perturbations examined in Chapter 5). In this case the inhomo-
geneous term I(x′, t′) may be written as

I(x′, t′) = ψ0(x
′ +X(t′))sech2(x′)− φ′c(x

′)

M0

∞∫
−∞

dz φ′c(z)ψ0(z +X(t′))sech2(z) ,

(4.3.12)
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where the “background response” field ψ0 satisifies

−ψ′′0 + ψ0 = v(x) . (4.3.13)

We can solve for ψ0 by Fourier transforming and to this end we introduce the
following inverse transforms

ψ̄0(k) =
1√
2π

∞∫
−∞

dx eikxψ0(x) , (4.3.14)

v̄(k) =
1√
2π

∞∫
−∞

dx eikxv(x) . (4.3.15)

By substituting these transforms into Eq. (4.3.13) we see that they are related by

ψ̄0(k) =
v̄(k)

1 + k2
. (4.3.16)

Next we consider the t′ integral in Eq. (4.3.10)

∞∫
−∞

dt′e−(c+iy)t′I(x′, t′) . (4.3.17)

From Eq. (4.3.12) we see that the only t′ dependence occurs through X(t′). To
lowest order we approximate this by

X(t′) ≈ X0 + V0t
′ , (4.3.18)

where X0 ≡ X(0) and V0 ≡ Ẋ(0). By assuming Eq. (4.3.18) to be valid, we restrict
ourselves to the study of the case in which the kink scatters off the perturbation
to ∞. We are therefore led to consider the integral

J(ξ, y; c) ≡
∞∫

−∞

dt′e−(c+iy)t′ψ0(ξ +X0 + V0t
′) (4.3.19)

=
ei(ξ+X0)(y−ic)/V0

V0

∞∫
−∞

dζ e−iζ(y−ic)/V0ψ0(ζ) , (4.3.20)

where ξ is either x′ or z as required by Eq. (4.3.12). Although the integrand seems
to diverge as ζ → −∞ it does not since one can show that for the perturbation
chosen we have

v̄(k) ≈ e−k
2

(4.3.21)
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and therefore

ψ0(x) ≈
∞∫

−∞

dk
e−k

2
e−ikx

1 + k2
, (4.3.22)

and hence ψ0(x) will decay faster than e−x
2
. Since the integral converges we may

analytically continue it and obtain the result

J(ξ, y; c) =
√

2π
ei(ξ+X0)(y−ic)/V0

V0

ψ̄0

(y − ic

V0

)
. (4.3.23)

Having carried out the above integration we return to the expression (4.3.12)
for I(x′, t′) and find that this integral occurs inside the spatial integral over z and
therefore we consider the integral

√
2π

V0

eiX0(y−ic)/V0ψ̄0

(y − ic

V0

) ∞∫
−∞

dz φ′c(z)sech
2(z)eiz(y−ic)/V0 . (4.3.24)

Again it seems that this integral

∞∫
−∞

dz sech3(z)eiz(y−ic)/V0 (4.3.25)

may not converge due to the factor of ezc/v0 (I have used the fact that φ′c(z) =
2sech(z) for SG). Since c needs only to be > 0, we can choose it such that

c

V0

< 3 (4.3.26)

so that the sech3(z) factor will dominate. Using the fact that the integral does
indeed exist, we analytically continue a standard result from the Tables [95] to
obtain

∞∫
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dz sech3(z)eiz(y−ic)/V0 = π

[(
4− ic
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+ 1

]
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]
. (4.3.27)

Using all of these pieces we can write another integral expression for the phonon
field

ψ(x, t) =
ectecX0/V0

V0

√
2π

∞∫
−∞

dx′
∞∫

−∞

dyḠSG(x, x′; c+ iy)
eiyt

coshx′
ψ̄0
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×

×
{
eix
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cosh(x′)
− 2π

M0

[(y − ic
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)2
+ 1

]
sech

[π(y − ic)

2V0

]}
. (4.3.28)
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Again we must evaluate a two-dimensional integral to obtain values for ψ, however
this integrand has a rapidly decaying factor, namely the Laplace transform of the
Green function. However, the exponential factor

eix
′(y−ic)/V0 (4.3.29)

still oscillates rapidly in y since typical values of X0 and V0 are -10 and .3 respec-
tively. In addition we have an exponential term in time which also yields rapid
oscillations for large t. However this type of oscillating behavior may prove to be
the key to a quick and efficient evaluation of Eq. (4.3.28). The key lies in the fact
that the evaluation of Eq. (4.3.28) is written in “Fourier transform form”. The
fact that the integrand in Eq. (4.3.28) already involves Fourier transform of the
ψ0 field and therefore the possibility of using the convolution theorem exists. If
nothing else, we have in Eq. (4.3.28) an approximate analytic expression (in terms
of an integral) of the time Fourier transform for the ψ field

Assuming that Fourier transform methods are not tractable, the ease with
which Eq. (4.3.28) is evaluated depends on whether the oscillations are damped
quickly enough by the decaying factors. In addition to the rapid decay caused
by the Laplace transform of the Green function, the Fourier transform of the
background field is also rapidly decaying. For the perturbation examined in this
section, we have the following analytic form for ψ̄0:

ψ̄0 =
2
√
π cos kx0e

−k2/4

1 + k2
. (4.3.30)

With this additional decaying factor, it is quite possible that this integral may be
done numerically. One of the major problems with the previous two-dimensional
integral expression for the ψ field is that one had to evaluate the Green function
itself, which involves calculating and summing approximately 200 Bessel functions.
Even when these codes are vectorized and run on a Cray-1 computer, these ma-
nipulations require quite a bit of time. In view of the problems encountered with
the numerical integration of the ψ PDE (see §5.2), numerical evaluation of ψ using
Eq. (4.3.28) is a very attractive possibility which is currently under investigation.

4.4 Representative plots

To illustrate the behavior of the Green functions we present several plots of the
phonon part of the SG Green function [plots for the other Green functions derived
look very similar] . The numerical values for these plots are easily obtained from
the formulae in Appendix E.

We can get a feel for how the Green functions should behave by recalling
that G(x, x′, t − t′) represents the response of the field at (x, t) due to a delta
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function source at (x′, t′). To make this more concrete we can imagine striking one
of the pendula of the sine-Gordon pendulum chain with a sharp blow and watching
the response of the other pendula. We expect to see a pulse move out from the
“hit pendulum” and propagate toward the ends of the chain. In Figure 4.1 we plot
the Green function vs. x and x′ for various values of t = τ (we have chosen t′ = 0).
Fixing x′ = 8 ( i.e. the pendulum at x = 8 is struck) in Figure 4.1a, we move in the
direction of increasing x, starting at x = 0. Until x is on the order of 2, G(x, x′, τ)
is zero, meaning that the disturbance has not yet had enough time to propagate
from x = 8 to x < 2 (or x > 14). For τ = 4, time has progressed (recall we
have fixed t′ = 0) and the disturbance has propagated further outwards. At t = 8
the pulse reaches x = 8. In Figures 4.1e to 4.1h the pulse has propagated off the
scales, leaving behind “ripples”. As τ further increases the amplitude continues to
decrease in accord with the asymptotic behavior derived in section 4.2.

If one were to follow the procedure outlined in the preceding paragraph
with x′ = 3, one would note that before the pulse arrives at a particular position,
the Green function is not zero. This is because we have plotted the phonon con-
tribution, which has a non-retarded part which exactly cancels the bound state
contribution. It is this non-retarded part which gives a non-zero value for the
phonon contribution to the Green function “before the pulse arrives”. We see this
only near x = x′ = 0 because the bound state contribution is proportional to e−|z|

[SG], sech(x)sech(x′) [φ4] or e−|x|e−|x
′| [DQ].

Since the computation of the phonon response ψ involves integrals of the
Green function over x′ and t′, it is interesting to see the behavior of G(x, x′, t− t′)
for fixed x and t. In Figure 4.2 we plot the sine-Gordon Green function for x = 25
and t = 50. One of the interesting features is the step function which represents
the “light cone”. In performing the numerical integrals one must be careful not to
integrate through this step function since most numerical integrators cannot handle
such discontinuities. Another feature which presents some numerical difficulties is
the oscillation in time. Of course this oscillation will represent problems only if
we must integrate over several of these periods (which is in fact the case for the
perturbations examined in Chapter 5).

In Figure 4.3 we present illustrates one of the asymptotic limits of the
Green functions. The fact that the Green functions are not functions solely of
x − x′ is a consequence of the broken translational invariance which results from
the introduction of a kink. The only dependence on x and x′ which is not through
the combination x − x′ enters through the functions βi (SG) and γi (φ4). All
of these functions depend on x and x′ through various combinations of tanh(x)
and tanh(x′). For both x and x′ large these β and γ factors are constants so one
expects that for both x and x′ large the Green functions should depend only on
x− x′. This fact is illustrated by the plot in Figure 4.3. One can understand this
fact analytically by recalling that the functions fk(x) which are used to define the
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Figure 4.1: The time evolution for the phonon contribution to the SG Green

function G(x, x′, t− t′) in the x− x′ plane.
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Figure 4.2: The phonon contribution to the SG Green function G(x, x′, t − t′) in

the x′ − t′ plane.
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Figure 4.3: The SG Green function G(x, x′, t − t′) in the x − x′ plane. Note the

reflection symmetry about the x = x′ line.
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Green functions are asymptotically plane waves for large x and hence this behavior
is to be expected. This behavior may prove useful for certain perturbations if one
must perform integrals only over this translationally invariant region.

Figures 4.4 and 4.5 show plots of the real part of the Laplace transform of
the sine-Gordon Green function. In Figure 4.4 we plot the real part of the Laplace
transform ḠSG(x, x′, s̄) vs. x and x′ for fixed s̄ = 2+2i. Here we see the dominance

of the exponential factor e−|z|
√
s̄2+1 in Eq. (4.3.8) since the modulus of s̄ is large

enough so that the factors which do not depend on x − x′, that is the factors
involving β2 and β3, are small compared with the first term in Eq. (4.3.8). The
rapid decay in x′ shown in Figure 4.4 makes the integral in Eq. (4.3.28) converge
rapidly. One might think that the cusp shown in this figure would pose a problem
when Eq. (4.3.28) is numerically evaluated. However, one must realize that the
integral in Eq. (4.3.28) is not over the x − x′ plane but over the x′ − s̄i plane
where s̄i is the imaginary part of the Laplace transform variable. To get a feel for
the dependence on the Laplace transform variable s̄, we plot in Figure 4.5 the real
part of the Laplace transform ḠSG(x, x′; s̄) in the complex s̄ plane for x = 2.0 and
x′ = 1.0. The interesting feature in this plot is the dependence on the imaginary
part of s̄ which is a rapid decay. Again this is not surprising since the analytic
expression given in Eq. (4.3.8) involves an exponential factor of the form

e−|z|
√
s̄2+1 .

Since the Bromwich integral for the ψ field involves integrating in the complex s̄
plane along a line parallel to the imaginary s̄ axis, this rapid decay should greatly
facilitate the numerical calculations.
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Figure 4.4: The real part of the Laplace transform of the sine-Gordon Green

function ḠSG(x, x′; s̄) plotted vs. x and x′ for s̄ = 2 + 2i.
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Figure 4.5: The real part of the Laplace transform of the sine-Gordon Green

function ḠSG(x, x′; s̄) plotted in the complex s̄ plane for x = 2.0 and x′ = 1.0.



Chapter 5

Applications

In this chapter we apply the perturbation methods developed in Chapters 3 and
4 to several representative examples of different classes of physically interesting
perturbations. The first-order motion is always relatively easy to obtain as it only
involves solving for the ψ0 field (even this is not necessary for certain coupling
functions F [Φ,Φx]) and then evaluating numerical integrals such as

∞∫
−∞

dx v(x+X)φc(x) .

Once the effective potential is known the first-order motion of the kink center
of mass variable X is qualitatively known. It is the second-order motion which
requires a bit of numerical effort. In the following section the numerical proce-
dure followed to calculate the second-order kink motion is outlined. The codes
themselves are not included as appendices because they would require at least 100
pages of text (at least 60% of this is documentation). In section 5.2 we examine
the procedure used to obtain the phonon field ψ(x, t). Then in section 5.3 we treat
the interaction of a kink with a time-independent, spatially localized perturbation.
The effects of a uniform force on a sine-Gordon kink are studied in section 5.4. In
section 5.5 the oscillatory motion of a kink in a binding symmetric well is consid-
ered. Finally, in section 5.6 we study the motion of a kink traveling in a medium
whose limiting propagation speed changes smoothly to a higher value.

5.1 The Numerical Procedure

The set of equations which need to be solved to obtain the kink motion through
second order is

(M0 + ξ)Ẍ = − ∂V (X, t)

∂X
+

1

2

∫
χ2(x, t)U ′′′[φc(x)]φ

′
c(x)− 2Ẋ

∫
ψ̇′φ′c

68
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−
∫
v(x, t)

[
χ(x, t)

d

dx

∂F (φc, φ
′
c)

∂φc
+ χ′(x, t)

d

dx

∂F (φc, φ
′
c)

∂φ′c

]
− Ẋ2

∫
ψ̇′φ′c(x) , (5.1.1)

ψ̈(x, t) − ψ′′(x, t) + ψ(x, t)U ′′(φc) = (1− Pφc)
{[

1− U ′′(φc)
]
ψ0(x+X, t)

+ v(x+X, t)
[
F10[φc, φ

′
c]− F10[0, 0]

]
− d

dx

[
v(x+X, t)

(
F01[φc, φ

′
c]− F01[0, 0]

)]}
, (5.1.2)

where
χ(x, t) = ψ(x, t) + ψ0(x+X, t) (5.1.3)

V (X) = −
∞∫

−∞

v(x+X)F [φc(x), φ
′
c(x)] . (5.1.4)

The expression for the effective potential V (X) differs from the more general ex-
pression given in Eq. (3.4.8) because the codes are currently set up to handle only
perturbations v(x) which are independent of time.

The first step is to compute the effective potential V (X) for the range of
X which is to be examined. Typically V (X) will go to zero for X < Xbgn and
X > Xend so the numerical integrals need only to be computed for a finite range of
X. Up to 200 values of V (X) are calculated for evenly spaced Xbgn < X < Xend.
A bi-cubic spline fit [96] is then made to these data points, points outside the
“nonzero” range being set to zero. To be certain that the spline routine is working
properly, both the raw data points and interpolated values of V (X) are plotted
and compared. This check is made each time such spline coefficients are needed.

Given V (X) the first order motion of the kink is calculated by numerically
integrating the first order equation

Ẍ = −∂V (X, t)

∂X
, (5.1.5)

by using the algebraic/differential system solver DASSL [97]. Once again a spline
fit is made to the data points and the spline coefficients are written to a data file
for later use.

The next step is to evaluate the background field ψ0 which obeys the fol-
lowing equation

[∂tt − ∂xx]ψ0(x, t) + ψ0U
′(ψ0)− F10[ψ0, ψ

′
0]v(x, t) +

d

dx
(v(x, t)F01[ψ0, ψ

′
0]) = 0 .

(5.1.6)
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Since this is a linear equation it is possible to solve it by using fast Fourier trans-
forms. In using the fast Fourier transform codes found in the standard subroutine
libraries, one must be careful to include all of the appropriate scale factors. That
this has been done properly was checked by comparing the numerical results with
analytic results which are available for a special perturbation.

Now all of the functions needed to compute the right-hand side of the ψ PDE
are contained in spline coefficients. Evaluation of this inhomogeneous term again
involves some numerical integrals. Since this inhomogeneous term has 1−Pφc as a
prefactor, it must be orthogonal to the translation mode φ′c(x). This orthogonality
relation is explicitly checked by evaluating the integral

∞∫
−∞

dx φ′c(x)I(x, t) , (5.1.7)

with I(x′, t′) given by the right-hand side of Eq. (5.1.2), for as many as 200 values
of t. This is also a check on the spline fit since the values of the integrand are
obtained from the spline functions.

Now we are in a position to solve the ψ PDE numerically. A numerical
method which utilizes the method of lines [88] is used for this step in the calculation.
The boundary conditions applied to solve the PDE are that ψ be zero at both
ends. That this is the correct boundary condition may be seen by noting that
any phonons which propagate to the boundaries take a finite amount of time to
reach them so given any value of time t, one can find a value of x = x0 such
that ψ(x, t) = 0 for x > |x0|. Of course one cannot make the simulated system
arbitrarily large without using lots of computer time. Therefore one must be on
the watch for effects of radiation which reflects off of the boundary. One of the
checks made to both monitor this radiation problem and to check the PDE solver is
to take the values of ψ obtained and substitute them back into the PDE. The PDE
does not “know” about radiation which has been reflected from the walls so if the
numerically calculated values of ψ and its derivatives satisify Eq. (5.1.2), we know
the codes are working correctly (again, this also checks the spline fits). One of the
additional rather nice features of the code is that one can take many snapshots of
the ψ field and run them as a movie on a Sun computer. This method of viewing
the phonon field can be more efficient than looking at the two-dimensional surface
described by ψ(x, t).

A rather subtle point remains to be discussed regards the numerical evalu-
ation of the ψ field. When one views the plots of ψ(x, t) vs. x and t, there appears
to be a contribution which is not orthogonal to the translation mode. This fact
is confirmed by numerical integration and therefore one searches for the source of
the error. In fact one finds no error in the numerical method implemented, rather
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the cause of the trouble lies in the form of the ψ equation itself

ψtt − ψxx + U ′′[φc(x)]ψ = I(x, t) . (5.1.8)

The solution of this equation is required to be orthogonal to the translation mode
φ′c(x), however this PDE does not “know” about this constraint. In fact, this
equation is linearly unstable to the translation mode. To clarify this statement,
consider adding a time dependent constant times the translation mode to the actual
solution desired, denoted by ψ⊥(x, t);

ψ(x, t) = ψ⊥(x, t) + α(t)φ′c(x) . (5.1.9)

Since ψ⊥(x, t) is assumed to satisify Eq. (5.1.8), substitution of Eq. (5.1.9) into
(5.1.8) yields the following equation for α:

αttφ
′
c(x)− α(t)φ′′′c (x) + α(t)φ′c(x)U

′′[φ′c(x)] = 0 , (5.1.10)

which can be rewritten as

αttφ
′
c(x)− α(t)φ′′′c (x) + α(t)

d

dx
U ′[φ′c(x)] = 0 . (5.1.11)

Next, using the fact that U ′[φc(x)] = φ′′c (x), we see that the last two terms cancel
leaving us with

αttφ
′
c(x) = 0 . (5.1.12)

Therefore we see that α(t) can grow linearly with t and we still have a solution of
Eq. (5.1.8). Therefore, if in the numerical integration of the PDE, contributions
proportional to φ′c(x) will grow linearly. There are probably quite elaborate meth-
ods to prevent this which involve a modification of the PDE solver. Since this is a
nontrivial procedure, we resort to allowing this linear growth to occur, projecting
it out after the entire ψ field is obtained. As a final check, this resulting field is
again substituted into the PDE, good agreement being attained.

The final steps required to obtain X(t) to second order involve more nu-
merical integrals of functions found on the right-hand side of Eq. (5.1.1) and then
numerical integration of this ODE governing X.

Since there are several nontrivial numerical steps needed in this perturbation
procedure, one must ask how accurate the final answer is. Although there are quite
a few steps needed, each result obtained is either compared with analytic results
when available or an indirect property, such as orthogonality to a given function
is checked. Therefore we say with confidence that the final second-order result
for X(t) is accurate to at least two or three significant digits. This number could
undoubtedly be pushed further since the tolerances presently being requested are
not at their absolute limit. However this could entail the consumption of several
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hours of Cray-1 time with no better physical understanding. Of course such added
significant digits would not be relevant since higher order corrections would wash
out this accuracy. Currently the total time required to do all of the calculations
for the second-order kink motion (including all relevant plots) is approximately
two minutes of Cray-1 time. Therefore these calculations are quite tractable in at
most a few hours of time on a personal computer.

5.2 Evaluation of ψ(x, t)

Since the ψ field satisfies a PDE it is the most difficult part of the numerical
scheme. As mentioned above this problem has been solved by actually integrating
the PDE. In this section we present some other methods which, although haven’t
proven to be as efficient as the PDE solver, are nonetheless legitimate methods.

The first method which comes to mind is the use of the Green functions
derived in Chapter 4. This approach is the method of choice because one does
not have to deal with such problems as reflected radiation from the boundaries.
However, it does require the numerical evaluation of a two dimensional integral.
There are several packaged routines which are set up to do such integrals. However,
they work best when the integrand is a smooth function which is not the case
as can be seen in Figure 5.1 for the perturbation discussed in section 5.3. The
rapid oscillations in time are due to the Green function, so this method would
be quite efficient if the perturbation was such that the function I(x′, t′) did not
sample so many oscillations. Even when it does sample many oscillations, the
two dimensional numerical integrator works. However, to accurately do one such
integral to an accuracy of three significant digits requires about one minute of
Cray-1 time. Since the ψ(x, t) field is needed for approximately 30 values of x and
100 values of t, this computation would require hours of Cray time.

The use of a Fourier transform method has been ruled out in Chapter 4 due
to the step function in G(x, x′, t − t′) at the “light cone”. A Laplace transform
method was then shown to circumvent this step function. However, since the
question of the oscillations discussed in section 4.3 has not yet been resolved, this
method has not been implemented. A method which would require the use of
the Green functions evaluated at complex arguments requires a deformation of the
contour from along the real time axis into the complex t plane (see Figure 5.2).
The complex component of time would add an exponentially decreasing factor to
the integrand which would greatly enhance convergence. This method has not
been implemented because at present the modified Lommel function codes are not
set up to handle complex arguments.

At this point it was decided to solve the ψ PDE itself. Since it is a linear
equation, there are several techniques available. One can Fourier transform in
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Figure 5.1: The integrand GSG(x, x′, t − t′)I(x′, t′) for x = 50, t = 25. The

inhomogeneous function I corresponds to the perturbation studied in section 5.3.
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Figure 5.2: Deformation into the complex t plane of the contour for the integral

representation of ψ(x, t) (see Eq. (3.4.12)).
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time,

ψ(x, t) =
1√
2π

∞∫
−∞

dωeiωtψ̄(x, ω) , (5.2.1)

which then requires the solution of the complex ODE

−ω2ψ̄ − ψ̄xx + U ′′(φc)ψ̄ = Ī(x, ω) (5.2.2)

where Ī(x, ω) is the Fourier transform of the inhomogeneous term I(x, t). The
solution of this ODE is certainly easier than solving a PDE. However one needs
to invert the Fourier transform to obtain ψ(x, t). This method of attack is not
implemented because it requires far more CPU time than the PDE solver.

One final method involves doing a discrete time Fourier transform, that is
using fast Fourier transform packages. This requires the solution of 2N+1 coupled
ODEs for the Fourier coefficients cn(x) and sn(x) defined by

ψ(x, t) =
N∑
n=0

cn(x) cos
[2nπ(t− tbgn)

tend − tbgn

]
+

N∑
n=0

sn(x) sin
[2nπ(t− tbgn)

tend − tbgn

]
. (5.2.3)

Even by using the fastest fast Fourier transform codes available this procedure
requires more time than the PDE solver. Although there are dangers in using the
PDE solver (e.g., reflected radiation), it has the advantage that it requires only
one step, namely the solution of the PDE. The Fourier transform methods outlined
require the evaluation of Fourier transforms, solution of ODEs and then the inverse
transforms. Each additional step adds to the unavoidable round-off errors.

5.3 Kink Collision with a Localized Impurity

For our first application of the method outlined above we consider the motion of a
sine-Gordon kink in the presence of a a time-independent perturbation v(x) which
is localized in space. The coupling function F [Φ,Φx] is chosen to be Φ(x, t) so that
the interaction Hamiltonian has the form

Hint = −
∞∫

−∞

dx v(x) Φ(x, t) . (5.3.1)

The choice of the perturbation v(x) is motivated by an example studied by FTBK
[37] who chose for their interaction Hamiltonian

Hint = −
∞∫

−∞

dx u(x) Φ′(x, t) . (5.3.2)
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Figure 5.3: The perturbation v(x) (solid) and the background response ψ0(x)

(dashed) it generates.

where u(x) is the sum of two step functions. In the language of charge-density-
wave systems, the derivative of the field Φx represents the local, excess charge
density. Therefore, the perturbation given in Eq. (5.3.2) models the interaction of
a charge-density-wave with two defects of opposite strength. By integrating Eq.
(5.3.2) by parts we obtain a form analogous to Eq. (5.3.1) with v(x) the sum of
two delta functions. To make the perturbation more realistic, we replace the two
delta functions by Gaussians of width w−1 and centered at ±x0

v(x) = λ
{
e−w(x−x0)2 − e−w(x+x0)2

}
. (5.3.3)

Using Eq. (5.1.6) with F10 = 1 and F01 = 0, we numerically determine the
background response ψ0(x, t) induced by v(x). Due to the simple form of v(x)
an analytic expression for the ψ0 field is available in terms of the complementary
error function. This expression agrees very well with the numerical computation
of ψ0 which is plotted in Figure 5.3 along with the perturbation for the following
parameter values

X(0) = −20 , Ẋ(0) = 0.3 , λ = 0.04 , w = 1 , x0 = 5 . (5.3.4)

As one would expect, a localized perturbation leads to a localized response. The
effective potential which the kink feels in first order is given by

V (X) = −
∞∫

−∞

dx v(x+X)φ′c(x) , (5.3.5)
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Figure 5.4: The potential V (X) (solid) and its derivative V ′(X) (dashed).

and is plotted in Figure 5.4 with the negative of the effective force V ′(X). From
this potential energy graph, we see that the velocity of the kink center of mass
should increase upon entering the perturbation region and then decrease upon
leaving. This behavior is confirmed when the first-order equation of motion is
solved numerically, the results of which are plotted in Figure 5.5. These first-order
results are quite reasonable when one physically examines the perturbation chosen
in the context of the sine-Gordon pendulum chain. In this case, the perturbation
given by Eq. (5.3.1) may be interpreted as representing two equal but opposite
localized torques acting on the chain. The first of these torques pushes the pendula
to positive angles and therefore tends to aid in the propagation of the kink whereas
the second has the opposite affect. Therefore a simple physical argument gives us
our first-order results. Such arguments are not available when we want to consider
the second-order motion which represents the effects of the phonons back on the
kink center of mass.

Before we can study the second-order motion of the kink center of mass,
we must solve for the radiation field ψ(x, t). For this type of perturbation, we
found that the easiest way to solve for ψ is by direct numerical integration of the
PDE given in Eq. (5.1.2). The first step in this process is the evaluation of the
inhomogeneous term in the ψ PDE which for the present perturbation is

(1− Pφc)
[
1− U ′′(φc)

]
ψ0(x+X, t) . (5.3.6)

Although an analytic form for ψ0 is available, we were unable to get an analytic
result for the integral in Eq. (5.3.6) [the integration is implied by the projection
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Figure 5.5: The first-order kink position X(t) (solid) and velocity Ẋ(t) (dashed).

operator Pφc ] and therefore had to resort to a numerical evaluation. The result
of this calculation must be orthogonal to the translation mode, a fact which was
confirmed by explicit numerical integration over x for 100 evenly spaced values of
time. Finally we note that we used the first-order result for X(t) in evaluating Eq.
(5.3.6).

The numerical technique used to solve the PDE is a method of lines tech-
nique developed by J. M. Hyman [88]. Although this code has proved to be quite
reliable in a variety of problems, we made the further check of substituting the
values obtained for ψ back into the PDE and obtained good agreement. The re-
sults of the numerical integrations are given in Figure 5.6. Initially the ψ field is
zero and attains nonzero values only the kink encounters the first of the Gaussian
perturbations. After the kink has passed the second Gaussian perturbation, the ψ
field appears to go to zero. The dominant features shown in Figure 5.6 represent a
temporary shape change of the kink. In addition we see that some small amplitude
radiation is emitted in the collision process. One can see this radiation propagat-
ing towards the boundary which eventually reflects back toward the center of the
system. The length of the system was chosen so that for the times examined this
reflected radiation does not influence the motion of the kink.

Given the ψ and ψ0 fields, we perform the appropriate integrals over space
as required in Eq. (5.1.1) which enables us to solve the second-order equation of
motion for X. Since the second-order corrections to the velocity are quite small, we
plot only this contribution, labeled by δv, in Figure 5.7. Figure 5.7 shows that the
second-order contribution to the kink velocity experiences an increase followed by
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Figure 5.6: Phonon field ψ(x, t) generated during the collision of the kink with the

impurity.
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Figure 5.7: The second-order contribution to the kink velocity.

a sharp decrease, which corresponds to the collision with the first of the Gaussian
perturbations. Next the velocity moves towards zero before undergoing a decrease
followed by an increase before settling into oscillations, that is upon encountering
the second Gaussian perturbation the velocity changes in essentially the same
fashion as it did as when it “hit” the first, but in reverse order.

The small oscillations which are present after the collision have a mean
which is slightly smaller than the initial velocity. This slightly reduced velocity
represents a transfer of energy into the radiation field. The oscillations in the
velocity demonstrate the fact that the kink is indeed a deformable particle. Similar
oscillations in the kink velocity have been observed in kink-antikink scattering in φ4

[15]. Campbell et al. [15] have demonstrated explicitly that this type of “wobbling
kink” is the result of an exchange of energy between the kink and the “shape mode”.
(See §6.1 for a detailed discussion of this energy exchange). In addition, Segur has
presented analytic evidence for the existence of “wobbling kink” solutions in φ4

[43]. The φ4 wobbling kinks were found to be stable while the sine-Gordon kinks
were found to be mildly unstable [43].

Although we cannot follow the evolution of the velocity for arbitrarily large
times, we know from the analysis given in section 3.4 that the kink will even-
tually reach a constant velocity because our perturbation is localized and time-
independent. Although the value of the final velocity is only slightly less than
the initial velocity, the difference in the kink position due to this second order
effect relative to first-order result will grow linearly in time which would hopefully
be a measurable quantity. Since the ψ field depends linearly on the perturbation
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strength λ, we should see a quadratic growth with λ in this second-order effect. A
more systematic study of this perturbation is planned to examine the dependence
of this effect on the parameters λ,w, and x0. It would also be interesting to treat
the repulsive potential (λ < 0) to study the reflection of kinks. It is conceivable
that with the additional freedom gained by allowing the kink shape to deform, (i.e.
the ψ field effectively changes the shape of the kink) one could see transmission of a
kink in second order when reflection occurred in first order (“classical tunneling”)
[98].

5.4 Uniform Force with Damping

Next we study the motion of a kink under the influence of a uniform force that
is, a perturbation which is independent of space and time. In addition we add a
phenomenological damping term to simulate the effect of fluctuations experienced
in real systems. The source of this dissipation varies from the ordinary lattice
vibrations [64] present in solids to shunt resistances in Josephson junctions [17] to
interchain coupling in polyacetylene [19].

This particular perturbation has been the source of a great deal of contro-
versy. In a series of papers Fernandez, Reinisch, and coworkers [85] claimed to
observe non-Newtonian motion of the kinks. Specifically they found that for small
times the kink position grew as t3 compared with the standard result of t2 for a
particle under the influence of a constant force. For longer times the t2 behavior
was observed. Since then several investigators [99, 100, 101] have pointed out that
in their work, Fernandez et al. did not account for the background response of the
field explicitly. Specifically, their initial condition was a sine-Gordon kink without
including the uniform background shift produced by a constant force. Therefore
their evolution equations had to generate this background in addition to acceler-
ating the kink. After a short time this constant background was established and
from then on Newtonian acceleration of the kink was observed.

Although the formalism developed so far can be used to treat such a per-
turbation, we will make use of results derived in Appendix B. There we show that
we can derive the kink center of mass equation by simply substituting the field
ansatz of Eq. (2.3.2) into the equation of motion for the full Φ(x, t) field. This
simple substitution is possible because the transformation equations give us the
old variables in terms of the new ones. In addition to giving the correct equations
of motion with less effort, this procedure allows us to add a phenomenological
damping term. We take as our coupling function F [Φ,Φx] = Φ and v(x, t) = E0

as the perturbation which gives us

Φtt + εΦt(x, t)− Φxx + U ′(Φ)− E0 = 0 . (5.4.1)
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Substitution of Eq. (3.3.2) into Eq. (5.4.1) yields the following first-order equation
of motion for the kink center of mass

M0Ẍ = 2πE0 − εẊ , (5.4.2)

where we have assumed that the damping parameter ε and constant force E0 are
both small and of the same order. Equation (5.4.2) states that for ε = 0 the
kink undergoes constant acceleration for all times. We see no evidence of non-
Newtonian behavior because our method explicitly accounts for the motion of the
“wings”, that is the regions far from the kink center (as suggested by Olsen and
Samuelson [100]). In this case, the ψ0 field (“wings”) is simply given by

U ′(ψ0) = E0 . (5.4.3)

To obtain the full field Φ(x, t), one would have to add in the background contri-
bution ψ0 plus any phonons produced.

Another way to study a space- and time-independent perturbation is to
include the constant background ψ0 in the definition of the kink [101, 102], that is
we define a “deformed kink” φDc (x) which satisifies

−∂xxφDc + U ′(φDc ) + E0 = 0 . (5.4.4)

Both methods (Euler-Lagrange and “direct substitution”) for deriving the equation
of motion for the kink center of mass variable are still valid when one uses the
deformed kink because the only feature that one exploits is that the kink satisfies
a given differential equation. However, when the full field Φ(x, t) is decomposed
into a deformed kink plus a radiation field, the question of the stability of this
ansatz against small oscillations must again be addressed. Therefore we proceed
as before, assuming that the field can be decomposed into a “deformed kink” plus
a phonon field ψ(x, t),

Φ(x, t) = φDc (x) + ψ(x, t) , (5.4.5)

where the deformed kink φDc (x) satisifies Eq. (5.4.4). Using Eq. (5.4.3), one can
show that ψ(x, t) satisifies

ψtt − ψxx + ψU ′′[φDc (x)] = 0 . (5.4.6)

Equation (5.4.6) differs from Eq. (3.1.6) only in that the second derivative of the
potential is evaluated at the deformed kink. Since the perturbation is assumed
small, the change in the spectrum of the operator in Eq. (5.4.6) is small. In
particular, there is still a zero frequency mode present. If our ansatz is unstable,
there must be a mode whose squared frequency is negative. Since we still have
a zero frequency mode, this means that the eigenvalue of one of the bound state
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modes or continuum modes must be less than zero. Since our perturbation is
small, first order perturbation theory tells us that the change in the eigenvalues
of these modes must also be small and therefore no such negative eigenvalue is
possible for small perturbations. The result of this analysis is that the deformed
kink also obeys Newton’s law as stated in Eq. (5.1.1) in which the background field
ψ0(x) = 0. Although this result can be obtained without referring to a deformed
kink, the fact that one can use a deformed kink as a starting point turns out to
be very useful when the problem of thermal noise is attacked via a Fokker-Planck
approach (see section 6.3.6).

5.5 Oscillation in a Binding Symmetric Potential

In this section we investigate the motion of a sine-Gordon kink under a time-
independent perturbation v(x) which for small x has a quadratic minimum at
x = 0. The trapping or pinning of solitons is a phenomenon which has attracted
quite a bit of attention lately [103, 104, 105]. Once again the theme is the exchange
of energy from the solitons into other modes of the system. In what follows we
present a rather general analysis, which although it is of limited applicability due to
the approximations made, shows some techniques which may be applied to obtain
detailed second order results without resorting to numerical analysis. Following
this we present some preliminary numerical results.

We choose as our coupling function F [Φ,Φx] = Φx which as shown below
will lead to a symmetric binding effective potential for the kink. To see that this
is indeed the case, we make a Taylor series expansion of the effective potential

V (X) = λ

∞∫
−∞

dx v(x+X)φ′c(x) . (5.5.1)

about X = 0. Such an expansion is valid for low energy kinks, that is for both
X(0) and Ẋ(0) ≈ 0. Carrying out this expansion we have

V (X) ≈ λ

2
X2

∞∫
−∞

v′′(x)φ′c(x) +O(X4) , (5.5.2)

≈ 1

2
κX2 +O(X4) , (5.5.3)

where we have neglected a constant term and used the symmetry of v(x) and φ′c(x).
Since v′′(x) and φ′c(x) are both positive even functions, we see that the effective
spring constant κ

κ ≡ λ

∞∫
−∞

dx v′′(x)φ′c(x) , (5.5.4)
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is positive.
We now consider the second-order motion of the kink, obtaining some gen-

eral results without resorting to detailed numerical calculations. The second-order
equation of motion, again assuming that the Ẋ2 term is negligible, may be obtained
from Eq. (5.1.1)

(M0 + ξ)Ẍ = − ∂V (X, t)

∂X
+

1

2

∫
χ2(x, t)U ′′′[φc(x)]φ

′
c(x)− 2Ẋ

∫
ψ̇′φ′c . (5.5.5)

To examine the second-order terms in Eq. (5.5.5), we need some symmetry prop-
erties of the ψ0(x) and ψ(x, t) fields. From Eq. (5.1.6) we have for the ψ0(x)
field,

−∂xxψ0(x) + ψ0(x) = v′(x) , (5.5.6)

where the appropriate Taylor series expansions have been used. Since v′(x) is an
odd function, ψ0(x) is also an odd function. In fact, for small x, ψ0(x) = x is a
solution of Eq. (5.5.6) since v′(x) = x for small x.

The ψ equation is given by

ψ̈(x, t)− ψxx(x, t) + ψ(x, t)U ′′[φc(x)] = (1− Pφc)
[
1− U ′′(φc)

]
ψ0(x) , (5.5.7)

where to lowest order we have replaced X(t) by 0. This is the approximation
which was mentioned above as seriously limiting the applicability of the following
results. Since we can always obtain the first order center of mass motion before
the ψ field is calculated, this approximation need not be made, however it allows
us to continue with the analytic development.

To evaluate the ψ field we use the Green function representation,

ψ(x, t) =

∞∫
−∞

dx′
∞∫

−∞

dt′
[
1− U ′′(φc(x

′))
]
ψ0(x

′)

∞∫
−∞

dkf∗k (x)fk(x
′)

∞∫
−∞

dωeiωτ

2π(ω2
k − ω2)

,

(5.5.8)
where we have also substituted the integral representation for the Green function
(τ = t− t′) and used the fact that φ′c(x) is orthogonal to the functions fk(x). Since
the only time dependence on the right-hand side of Eq. (5.5.8) occurs through the
quantity t − t′, we can change the integration variable from t′ to τ . After doing
the τ and ω integrals we are left with

ψ(x) =

∞∫
−∞

dk
f ∗k (x)

ω2
k

∞∫
−∞

dx′fk(x
′)
[
1− U ′′(φc(x

′))
]
ψ0(x

′) . (5.5.9)

Therefore to this order the ψ field is independent of time and hence the only
remaining nonzero term in Eq. (5.5.5) which depends on ψ is ξ. Recalling the
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definition of ξ from Eq. (3.3.5) we have

ξ =

∞∫
−∞

dxψ′(x, t)φ′c(x) , (5.5.10)

=

∞∫
−∞

dxφ′c(x)

∞∫
−∞

dk
f ∗

′
k (x)

ω2
k

∞∫
−∞

dx′fk(x
′)
[
1− U ′′(φc(x

′))
]
ψ0(x

′) , (5.5.11)

= −
∞∫

−∞

dx′
[
1− U ′′(φc(x

′))
]
ψ0(x

′)

∞∫
−∞

dk
f ∗k (x

′)

ω2
k

∞∫
−∞

dxfk(x)φ
′′
c (x) , (5.5.12)

=
1

2

∞∫
−∞

dx′
[
1− U ′′(φc(x

′))
]
ψ0(x

′)x′φ′c(x
′) , (5.5.13)

where we have made use of the identity in Eq. (3.1.15). Since 1 − U ′′(φc(x
′)) =

2sech2(x′) and φ′c(x) = 2sech(x′) (both for sine-Gordon), and ψ0(x) is odd, we see
that the mass renormalization is positive.

Now we consider a concrete example in which the perturbation has the form

v(x) = λ sechwx , (5.5.14)

where the parameter values were chosen to be

w = 4 , λ = .04 . (5.5.15)

In order to obtain oscillations (as opposed to escape to ∞) the initial conditions
of the kink were taken as

X(0) = 0.0 , Ẋ(0) = 0.05 . (5.5.16)

In Figures 5.8 to 5.10 we present the perturbation, background, effective potential,
and force along with the first order motion. As expected, the kink undergoes
“harmonic-like” oscillations. Since in this example, the kink passes through the
perturbation periodically, we might expect to see quite a few phonons generated,
which is indeed the case as shown in Figure 5.11 Another interesting feature of
the ψ field is that one can see that near x = 0 a slightly larger, more regular
structure emerges, indicative of a permanent (or possibly periodic) shape change
of the kink. One should also notice that the phonons emitted for small times reach
the boundary quickly, and therefore almost certainly reflect back into the region
of the perturbation, affecting the results. This is why these results were termed
preliminary. Since the size of the system is already reasonably large, some other
device such as absorbing boundary conditions will have to be employed in order
to continue this study. One would also like to see more periods of the oscillation.
However this involves increasing the effective spring constant κ which in turn means
increasing the perturbation strength.
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Figure 5.8: Perturbation (solid) and background field (dashed).

Figure 5.9: Effective potential (solid) and the negative of the force (dashed).
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Figure 5.10: First-order kink position (solid) and velocity (dashed).

5.6 Transmission Through an Interface

As a final example we consider the effects of a change in the limiting speed of
propagation of the kink. Such a change is commonly encountered in many physi-
cal systems in which some feature of the underlying medium undergoes a change.
In Josephson junctions this situation arises when two such junctions with slightly
different shunt capacitances are spliced together [17]. A change in the Fermi veloc-
ity, i.e. electron density, has a similar effect in charge-density-wave systems [106].
To model such changes we consider a perturbation of the form

Hint =
λ

2

∞∫
−∞

dx [1 + tanh(x)]Φ2
x(x) , (5.6.1)

which leads to the following modification of the equation of motion:

Φtt − [1 + λ(1 + tanh(x))]Φxx − λsech2(x)Φx + sin Φ = 0 , (5.6.2)

where once again we consider the sine-Gordon system. Comparing Eq. (5.6.2) with
Eq. (2.1.2), we see that we have a system in which the spring constant changes
smoothly as a function of position. The term proportional to Φx results from the
fact that the force on a given pendulum due to its left neighbor does not equal the
force due to the right neighbor due to the variation in the spring constant.

The perturbation v(x) and the negative of the effective force on the kink
in first order are plotted in Figure 5.12. The background field ψ0 in this case is
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Figure 5.11: Phonon field ψ(x, t). The length of the system is actually 60. However

only a portion is shown here for clarity.
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Figure 5.12: The potential (solid) and the negative of the effective force (dashed)

for the interface perturbation.
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Figure 5.13: The first order kink position (solid) and velocity (dashed) as a funciton

of time.

zero which can be understood in terms of the sine-Gordon pendulum chain. From
the equation of motion we see that the perturbation respresents a change in the
limiting speed of the kink. This speed is in turn determined by the torsion spring
constant. Therefore the perturbation in fact represents a change in the spring
constant. Unlike the “torqued pendulum” perturbation studied in section 5.3,
such a change in the spring constant does not give rise to any new equilibrium
configuration of the pendula.

The resulting first-order motion of the kink is plotted in Figure 5.13. As
mentioned in section 2.1, the “rest energy” of this system is proportional to the
product of the limiting speed of the medium c0 and the natural frequency ω0. In
our units ω0 = 1 so the rest energy is proportional to the limiting speed c0. From
Eq. (5.6.2) we see that this limiting speed depends on position and is given by

c20(x) = 1 + λ(1 + tanh(x)) . (5.6.3)

Of course the interpretation of c0(x) as a limiting speed applies only when the
term linear in Φx is zero, that is for large x. As x → ∞ we find that the square
of the limiting speed approaches 1 + 2λ, and therefore for positive λ it increases.
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This means that the “rest energy” also increases, so if the total energy is to be
conserved, the velocity of the kink must decrease upon entering the perturbation
region, as shown in Figure 5.13.

As in the previous examples, the interesting results occur in second order.
In this case, we can physically deduce part of this contribution. Returning to space
and time variables used in section 2.1, we recall that the width of a kink has the
form

d =
c0
ω0

, (5.6.4)

where c20 is the coefficient of the φxx term in Eq. (5.6.2) and ω2
0 is the coefficient

of the sin Φ term. Since in Eq. (5.6.2) ω0 = 1, we see that the kink width is given
by c0. Therefore the width of the kink long after passing the interface must be

d = c0 =
√

1 + 2λ ≈ 1 + λ . (5.6.5)

Any such shape changes in the kink must be taken up by the ψ field. In all of the
previous examples this shape change has been localized in time. However in this
case it must persist. Such qualitative behavior is shown in Figure 5.14, a change
occurs when the kink encounters the interface and a constant profile is maintained
thereafter with very few phonons emitted. To obtain a quantitative check, we plot
(solid curve) in Figure 5.15 the difference between the final kink profile and the
initial kink profile

ψana = 4 arctan(ex/(1+λ))− 4 arctan(ex) , (5.6.6)

where the subscript ana denotes “analytic”. On the same graph we plot the nu-
merically evaluated ψ field (dashed) as a function of x for a given value of time for
which the kink has passed the interface (t = 80). The agreement is quite remark-
able, indicating the accuracy of the perturbation theory itself and the numerical
method used in the calculation of the ψ field.

This ends the applications we have considered to date. They have been
included as a means for demonstrating some of the features of the perturbation
method developed in Chapter 3. One of the expected features is the exchange of
energy from the kink center of mass motion into the phonon degrees of freedom,
again indicating the deformable nature of the particle. On the other hand, the
transmission through an interface illustrates the other role which the ψ field has,
namely that of effecting a change of the kink profile. The agreement of the analytic
and numerical plots for this deformation is quite impressive, giving us confidence
not only with the perturbation theory, but with the numerical procedure employed.
It remains to carry out some systematic studies of these and other perturbations to
see, for example, how the number of phonons generated depends on the strength,
width and shape of the perturbations and compare these results with the pertinent
physical systems.
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Figure 5.14: The phonon field ψ(x, t) as a function of x and t for the interface

problem.
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Figure 5.15: Predicted (solid) and numerical (dashed) ψ fields.



Chapter 6

Thermal Noise

Since every physical system is subject to thermal fluctuations, it is important to
consider the effects of such noise on the motion of kinks. The two standard meth-
ods which are employed are the Langevin [107] and Fokker-Planck [107, 108, 109]
techniques. Each has its advantages and disadvantages. Although the Langevin
approach is somewhat simpler to use, it is an equilibrium calculation and there-
fore one does not get information about the approach to equilibrium. This is an
important question for the soliton bearing systems we are dealing with because we
have essentially two quite different degrees of freedom to treat, namely the kink
itself and the phonons. It is often assumed that the phonon degrees of freedom are
adiabatic, that is, if the system is jarred from equilibrium, it is assumed that the
phonon degrees of freedom will equilibrate very quickly about the instantaneous
kink position and velocity. Although this seems to be quite a reasonable assump-
tion, one must really confirm this and the Fokker-Planck technique is one way to
do this.

In the Fokker-Planck method [108], one writes an equation for the time-de-
pendent, phase-space probability distribution function, P (X, p; t). If the system
is not driven, P (X, p;∞) represents the equilibrium distribution function familiar
from classical equilibrium statistical mechanics. In the driven case, P (X, p;∞)
represents the steady-state distribution function. With the full time-dependent
function one can compute time-dependent averages such as

〈X(t)〉 =

∞∫
−∞

dX

∞∫
−∞

dp X P (X, p; t) .

Since one can also compute 〈X(t)〉 via the Langevin approach, it is not here where
the strength of the Fokker-Planck method lies. Rather, one can find the time
needed to reach equilibrium. This is done by solving the Fokker-Planck equation
for P (X, p; t) with initial conditions which are far from equilibrium such as

P (X, p, 0) = δ(X −X0)δ(p− p0) .

94
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Although one cannot often find the exact time-dependent solution to the Fokker-
Planck equation, the question of the equilibration time can be settled by finding
only the lowest nonzero eigenvalue. In addition to the standard methods available
for this, there are more modern supersymmetric methods [110] which can also be
of great value.

A third and somewhat nonstandard approach has been used by Wada and
Schrieffer [67] (WS). They calculate a “diffusion constant” by using the fluctuation-
dissipation theorem [67, 111]

D = lim
t→∞

〈X2(t)〉
2t

.

The calculation needed here is of course 〈X2(t)〉. To this end, they begin with a
stationary kink and calculate the shift in the kink position (X(t)) which results
from the collision of a kink with a phonon packet which they assume to be thermally
excited according to the distribution function

Peq(ψ, π) = e−βHph ,

where β = T−1 (kB = 1 in our units) and Hph is given by

Hph =
∫ [1

2
π2 +

1

2
ψ′2 +

1

2
ψ2U ′′(φc)

]
.

Assuming such a distribution function seems to be quite a reasonable choice, how-
ever no basis was given for the choice. It also implicitly assumes that the phonons
are in equilibrium but the kink is not. In real physical systems this distinction
cannot be made. For example, in the sine-Gordon pendulum chain, such ther-
mal fluctuations could be simulated by submerging the entire chain into a viscous
medium at some finite temperature. All of the pendula experience a random force,
so when a transformation is made to another set of basis functions, it is unrea-
sonable to assume that some of these modes feel the random force while others do
not. In disregarding this feature, WS’s method yields the unphysical result that
the initial velocity of the kink is undamped (see section 6.1), not at all like the
Brownian motion one might expect in view of the large body of evidence which
indicates that the kink behaves like an extended Newtonian particle. One of the
conclusions of this chapter is that we do indeed find that to lowest order the kink
behaves like a Brownian particle. We illustrate this by using both the Langevin
and Fokker-Planck methods. However, before we consider these techniques, cal-
culations are presented which verify the claim made above with regards to the
undamped motion of the kink.
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6.1 Thermalized Phonon Ansatz

To demonstrate that the assumptions of WS imply that the initial velocity of a
particle is undamped, we explicitly calculate 〈X2(t)〉 (through second order) using
the equation of motion (3.4.7) derived in Chapter 3. Since WS assume no direct
coupling to a heat bath, the perturbation is zero, in which case Eq. (3.4.7) takes
on the form

Ẍ(t) = −ηψẊ(t) + Fψ , (6.1.1)

where we have taken ψ0 to be zero and introduced the following definitions

ηψ ≡
−2

M0

∫
dx ψ̇(x, t)φ′′c (x) , (6.1.2)

Fψ ≡
1

2M0

∫
dx U ′′′[φc(x)]ψ

2(x, t)φ′c(x) . (6.1.3)

Above we claim that Eq. (6.1.1) holds through second order. However, since we
have no (formal) perturbation, this statement requires clarification. In using WS’s
approach, the perturbation enters the problem indirectly through the assumption
that the phonons are thermally distributed. Therefore the proper expansion pa-
rameter for low temperatures is T/M0 where M0 is the kink rest energy in our
units. Since the phonons are Gaussian-distributed (see below), we can use the
equipartition theorem to assign a

√
T power to the ψ field. In section 6.2 we show

that the kink also obeys the equipartition theorem to lowest order and therefore we
assign a

√
T power to Ẋ. Therefore, the right-hand side of Eq. (6.1.1) is correct

to order T , that is to second order in
√
T .

WS used Eq. (6.1.1) without the “inertial” term ηψ, and performed averages
over the phonon degrees of freedom by assuming for the equilibrium distribution
function for the phonons,

Peq = e−βHph , (6.1.4)

with Hph given by

Hph =
∫ [1

2
π2(x, t) +

1

2
ψ′2(x, t) +

1

2
ψ2(x, t)U ′′[φc(x)]

]
. (6.1.5)

To do the explicit calculations we use the following normal mode representations

ψ(x, t) =
∑
k

1√
2ωk

[
bkfk(x)e

−iωkt + b∗kf
∗
k (x)e

iωkt
]
, (6.1.6)

π(x, t) =
∑
k

−i
√
ωk
2

[
bkfk(x)e

−iωkt − b∗kf
∗
k (x)e

iωkt
]
, (6.1.7)
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which allows us to write
Hph =

∑
ωk|bk|2 . (6.1.8)

Using this representation we present the following quantities which have been com-
puted in Appendix F:

〈b∗kbk′〉 =
T

ωk
δk,k′ , (6.1.9)

〈ψ2(x, t)〉 = T
∑
k

|fk(x)|2

ω2
k

, (6.1.10)

where the average denoted by the brackets 〈〉 is defined by

〈F (bq, b
∗
q′)〉 =

∏
k

∞∫
−∞

dbk
∞∫
−∞

db∗k F (bq, b
∗
q′)e

−βωk|bk|2

∏
k

∞∫
−∞

dbk
∞∫
−∞

db∗k e
−βωk|bk|2

(6.1.11)

In addition one finds with the use of Eq. (6.1.11) that 〈Fψ〉 = 〈ηψ〉 = 0. Finally
we shall make use of the following correlation functions which are also computed
in Appendix F:

〈ηψ(t)ηψ(t′)〉 =
4T

M2
0

∑
k

|
∫
dxfk(x)φ

′′
c (x)|2 cos[ωk(t− t′)] , (6.1.12)

and

〈Fψ(t)Fψ(t′)〉 =
T 2

4M2
0

∑
k,q

|A(k, q)|
ω2
kω

2
q

{
cos[(ωk + ωq)(t− t′)] + cos[(ωk − ωq)(t− t′)] ,

}
(6.1.13)

where
A(k, q) ≡

∫
dx U ′′′[φc(x)]φ

′
c(x)fk(x)fq(x) . (6.1.14)

The correlation in Eq. (6.1.13) is different from that of usual random forces since
it has a long time tail due to the term when ωk = ωq, whereas the “kink-mass
fluctuation” correlation in Eq. (6.1.12) is appreciable only for short times (t− t′)
since ωk ≥ 1.

To obtain the velocity distribution we solve the “Langevin equation” given
in Eq. (6.1.1) with the use of an integrating function which yields

Ẋ(t) = Ẋ(t0)e
−

t∫
t0

dτ ηψ(τ)

+

t∫
t0

dτFψ(τ) +O(ψ3) . (6.1.15)
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Following WS, we turn on the heat bath adiabatically and take t0 → −∞ so that
ηψ → e

δt
2 ηψ, Fψ → e

δt
2 Fψ with δ → 0. In squaring Eq. (6.1.15) we encounter the

following terms

t∫
−∞

dτ

t∫
−∞

dτ ′〈ηψ(τ)ηψ(τ ′)〉eδ(τ+τ ′)/2 =
4T

M2
0

∑
k

|
∫
dxfk(x)φ

′′
c (x)|2

ω2
k

(6.1.16)

=
T

M0

, (6.1.17)

where the limit δ → 0 has been taken without encountering any singularities and
Eq. (3.1.15) has been used. Similarly one can show [112]

t∫
−∞

dτ

t∫
−∞

dτ ′〈Fψ(τ)Fψ(τ ′)〉eδ(τ+τ ′) (6.1.18)

=
T 2

M2
0

∑
k,q

|A(k, q)|2

ω2
kω

2
q

[ 1

(ωk + ωq)2 + δ2
+

1

(ωk − ωq)2 + δ2

]
(6.1.19)

≡ αT 2 . (6.1.20)

In both sine-Gordon and φ4 models [67, 70] A(k, q) ≈ ω2
k − ω2

q ; hence, there is no
singularity in Eq. (6.1.20) at ωk = ωq and α is finite. Using these relations we find

〈Ẋ2(t)〉 = Ẋ2(0)e2T/M0 + αT 2 +O(T 3) , (6.1.21)

which demonstrates the undamped initial velocity. Integrating Eq.(6.1.21) results
in [112]

〈X2(t)〉 = Ẋ2(0)(1 +B)(t− t0)
2 + CẊ2(0) + (t− t0)D , (6.1.22)

where

B =
1

t− t0

t∫
t0

dt′
t′∫

−∞

dτ ′
t′∫

−∞

dτ〈ηψ(τ ′)ηψ(τ)〉eδ(τ+τ ′)/2 , (6.1.23)

=
T

M0

, (6.1.24)

C =

t∫
−∞

dt′
t′∫

−∞

dt′′
t∫

−∞

dτ ′
τ ′∫

−∞

dτ〈ηψ(t′′)ηψ(τ)〉eδ(t′′+τ)/2 , (6.1.25)

=
4T

M2
0

∑
k

|
∫
dxfk(x)φ

′′
c (x)|2

ω4
k

, (6.1.26)
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(t− t0)D =

t∫
t0

dt′
t′∫

−∞

dt′′
t∫

−∞

dτ ′
τ ′∫

−∞

dτ〈Fψ(t′′)Fψ(τ)〉eδ(t′′+τ) , (6.1.27)

and Eqs. (6.1.12-13) have been used. The last term in Eq. (6.1.22) represents
the WS result. We evaluate the “diffusion constant” by taking a derivative of Eq.
(6.1.22) with respect to time which after some algebra yields

D =
T 2

2M2
0

∑
k,q

δ
|A(k, q)|2

ω2
kω

2
q

{
1

[(ωk + ωq)2 + δ2]2
+

1

[(ωk − ωq)2 + δ2]2

}
. (6.1.28)

To proceed further we make use of the fact [67, 70] that A(k, q) ≈ (ω2
k−ω2

q )(k− q)
and that the limit

A(k) ≡ lim
q→−k

A(k, q)

ω2
k − ω2

q

, (6.1.29)

is finite. In the limit as δ → 0, the pole at k = −q dominates and we have

D ≈ 2T 2

M2
0

δ
∑
k

|A(k)|2

ω2
k

∑
q

1

(ωk − ωq)2 + δ2
, (6.1.30)

≈ T 2

M2
0

∑
k

|A(k)|2

|k|ωk
, (6.1.31)

which is the result of WS for the diffusion constant. Therefore although we repro-
duce the result of WS, we obtain the unphysical result alluded to above, namely
that the kink’s initial velocity is undamped. With a slight modification we include
in the next section, the direct thermal coupling to all of the degrees of freedom
and obtain the standard Brownian motion result by using a method similar to the
Langevin method used above.

6.2 Langevin Approach

Next we study what is the more physically relevant problem in which the system
is in contact with a heat bath which we represent by an additive noise term that
enters into the full field equation of motion as

Φtt − Φxx + U ′(Φ) = F (x, t)− εΦt , (6.2.1)

where a phenomenological damping term has also been added and the Gaussian
white noise term has the correlation function [113],

〈F (x, t) F (x′, t′)〉 = 2εTδ(x− x′) δ(t− t′) . (6.2.2)
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In terms of the perturbation theory presented in section 3.3 we must choose the
coupling function F [Φ,Φx] of that section to be Φ. This in turn leads via Eq.
(B.10) of Appendix B to the following second-order equation of motion for X(t)

(M0 + ξ)Ẍ(t) + (M0 + ξ)εẊ + 2ξ̇Ẋ = Fψ −G(X, t) , (6.2.3)

where G(x, t) is the effective thermal noise force for the kink

G(X, t) ≡
∞∫

−∞

dx φ′c(x−X)F (x, t) , (6.2.4)

has the correlation

〈G(X, t) G(X ′, t′)〉 = 2εTδ(t− t′)

∞∫
−∞

dx φ′c(x−X)φ′c(x
′ −X) . (6.2.5)

The fact that this effective noise is not delta-function-correlated in space reflects
the extended nature of the kink. In the case in which the nonlinear potential is
the sine-Gordon potential we can analytically evaluate this correlation and find it
to be

〈G(X, t) G(X ′, t′)〉 = 4εT δ(t− t′)
X −X ′

sinh(X −X ′)
. (6.2.6)

Therefore, although the correlation is not a delta function it is short ranged.
With the aid of an integrating factor (M0 + ξ)eεt we obtain for the first

integral of Eq. (6.2.3)

Ẋ(t) =
(M0 + ξ(0))2

(M0 + ξ(t))2
e−εtẊ(0) +

1

(M0 + ξ(t))2
e−εt

t∫
0

dt′ eεt(M0 + ξ(t′))
[
Fψ −G

]
.

(6.2.7)
Squaring Eq. (6.2.7) and keeping only lowest order terms we have

〈Ẋ2(t)〉 = e−2εtẊ2(0)− e−2εt

t∫
0

dt′
t∫

0

dt′′eε(t
′+t′′)〈G(X, t′)G(X, t′′)〉 . (6.2.8)

Since the effective noise terms in Eq. (6.2.8) are evaluated at the same spatial
point, we can evaluate the correlation analytically to give us

〈G(X, t′)G(X, t′′)〉 =
2εT

M0

δ(t′ − t′′) . (6.2.9)
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Making use of the delta function in time we have

〈Ẋ2(t)〉 = e−2εt

{
Ẋ2(0)− 2Tε

M0

t∫
0

dt′e2εt
}
, (6.2.10)

=
T

M0

+ e−2εt

{
Ẋ2(0)− T

M0

}
. (6.2.11)

From Eq. (6.2.11) we see that any kink initial velocity is indeed exponen-
tially damped in time just as a “regular” Brownian particle. Furthermore we see
that the kink degree of freedom obeys the equipartition theorem

1

2
M0Ẋ

2 =
1

2
T , (6.2.12)

which agrees with all of our previous results which state that the kink behaves like
a Newtonian particle to lowest order.

In order to proceed to higher order, we need to include terms which are of
the order ψ3, that is of order T 3/2. Referring to Eq. (3.4.7) we see that this means
that we must include in Eq. (6.2.3)

Ẋ2

M0

∫
ψ′φ′′c , (6.2.13)

in addition to ψ3 terms. The presence of the Ẋ2 term requires that we find an
integrating factor other than that used for the first-order calculation, or deal with
this term perturbatively. Both methods are presently under investigation.

6.3 Fokker-Planck Approach

In the preceding section we studied the motion of a kink subject to a fluctuating
force by adding phenomenological damping and driving terms to the center of mass
equation derived in section 3.4. In this section we first write a Langevin equation
for the entire field Φ, derive the corresponding Fokker-Planck equation and then
make the transformation to the kink variables. The main benefit of this approach
is that we can attempt to answer the question of the approach to equilibrium.
Implicit in the work of the previous section is the assumption that the phonons
equilibrate more quickly than does the kink degree of freedom. An answer to this
question can be found through the Fokker-Planck method.
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6.3.1 The Full-Field Fokker-Planck Equation

We begin our derivation of the Fokker-Planck equation by writing the Langevin
equation for the entire field Φ(x, t)

Φtt − Φxx + U ′[Φ] + εΦt = F (x, t) , (6.3.1)

where x and t are dimensionless space and time variables and the thermal noise
term F (x, t) obeys the correlation function

〈F (x, t) F (x′, t′)〉 = 2εTδ(x− x′)δ(t− t′) . (6.3.2)

In order to avoid any assumptions regarding the speed with which the momentum
degrees of freedom equilibrate, we write a Fokker-Planck equation for a phase
space distribution function P [Φ(x, t),Π0(x, t)]. To this end, we rewrite Eq. (6.3.1)
in terms of the field Φ(x, t) and its conjugate momentum Π0(x, t):

Φ̇ = Π0 (6.3.3)

Π̇0 = Φxx − U ′[Φ]− εΦt + F (x, t) , (6.3.4)

where as before Φ and Π0 are canonically conjugate variables. The standard form
[108] for the bivariate functional Fokker-Planck equation is

∂P (Φ,Π0; t)

∂t

=

∞∫
−∞

dx

{
− δ

δΦ

[
AΦ[Φ,Π0]P (Φ,Π0; t)

]
− δ

δΠ0

[
AΠ0 [Φ,Π0]P (Φ,Π0; t)

]

+
1

2

δ2

δΦ2

[
BΦΦ[Φ,Π0]P (Φ,Π0; t)

]
+

1

2

δ2

δΠ2
0

[
BΠ0Π0 [Φ,Π0]P (Φ,Π0; t)

]
+

δ2

δΦδΠ0

[
BΦΠ0 [Φ,Π0]P (Φ,Π0; t)

]}
, (6.3.5)

where the A and B functions are defined by [108]

AΦ[Φ,Π0] = lim
∆t→0

〈∆Φ〉
∆t

, (6.3.6)

AΠ0 [Φ,Π0] = lim
∆t→0

〈∆Π0〉
∆t

, (6.3.7)

BΦΦ[Φ,Π0] = lim
∆t→0

〈(∆Φ)2〉
∆t

, (6.3.8)

BΦΠ0 [Φ,Π0] = lim
∆t→0

〈∆Φ∆Π0〉
∆t

, (6.3.9)
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BΠ0Π0 [Φ,Π0] = lim
∆t→0

〈(∆Π0)
2〉

∆t
, (6.3.10)

and we have omitted the space-time dependence of the fields for notational sim-
plicity. Using Eqs. (6.3.3) and (6.3.4) and the correlation function (6.3.2), it is
easy to show that BΦΦ and BΦΠ0 are zero while the others lead to the following
equation

∂P (Φ,Π0; t)

∂t

=

∞∫
−∞

dx

{
−Π0

δ

δΦ
P (Φ,Π0; t)−

δ

δΠ0

[(
Φxx − U ′[Φ]− εΠ0

)
P (Φ,Π0; t)

]

+ Tε
δ2

δΠ2
0

P (Φ,Π0; t)

}
. (6.3.11)

As it stands, this equation does not give one much information. However one can
easily show that the (time-independent) equilibrium solution may be written as

P eq(Φ,Π0) = e−βH , (6.3.12)

with the Hamiltonian given by

H =
1

2
Π2

0 +
1

2
Φ2
x + U [Φ] , (6.3.13)

which one would expect from equilibrium statistical mechanicals. The most im-
portant aspect of this solution is evident when the Hamiltonian is written in terms
of the new transformed variables X, p, ψ, π

H =
1

2M0

(p+
∫
πψ′)2

(1 + ξ/M0)2
+
∫
Hf , (6.3.14)

where

Hf =
1

2
π2 +

1

2
ψ′2 + V (ψ, φc) , (6.3.15)

V (ψ, φc) = U [Φc + ψ]− ψU ′[φc]− U [φc] , (6.3.16)

where the background field ψ0 has been set to zero. As mentioned before we do
not have decomposition of the Hamiltonian into terms which are purely kink and
purely phonon degrees of freedom. While the absence of such a decomposition
complicates the calculations, it leads to some interesting physics. For example,
consider the average value which the ψ field attains

〈ψ〉 =
∫
DψDπψe−βH . (6.3.17)
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Using the equation which Ẋ satisifies (Eq. (A.11)),

Ẋ =
p+

∫
πχ′

M0(1 + ξ/M0)2
, (6.3.18)

we can rewrite the Hamiltonian as

H =
1

2
M0(1 + ξ/M0)

2Ẋ2 +
∫
Hf . (6.3.19)

One might object to such a substitution since Eq. (6.3.18) applies only to the
stationary path since it is theX equation of motion whereas the functional integrals
required in Eq. (6.3.17) involve variations off of this path. The resolution of this
apparent problem is that the major contribution to the functional integral occurs
along the stationary path, with corrections being of higher order (in temperature).
Substitution of Eq. (6.3.19) into Eq. (6.3.17) shows that we have a term which
is linear in the ψ field (ξ depends on ψ linearly) with a coefficient proportional to
Ẋ2. This means that in doing the functional integral over ψ one must complete
the square in the ψ variable, giving rise to a nonzero equilibrium value for ψ which
depends on Ẋ, indicating once again the intricate relationship which exists between
the kink motion and the “phonons”.

6.3.2 Fokker-Planck Equation for the Kink Variables I.

As mentioned above, the Fokker-Planck equation for the full field Φ does not
give much information about the kink motion. The obvious thing to do is to
make the transformation to the kink and phonon degrees of freedom. One might
suspect that since the variable transformation is complex the transformation of
the functional derivative operators could be equally complex. This is indeed the
case as evidenced by the derivations presented in Appendix G. One of the benefits
of using this transformation, however, is that it is a canonical transformation and
therefore the Jacobian of the transformation is unity. This is an important fact
because in the following we shall perform integrals over the phonon degrees of
freedom to obtain a Fokker-Planck equation for the reduced distribution function
P (X, p; t).

Using these transformation laws we can derive a Fokker-Planck equation
for the new phase space distribution function P [X, p, ψ, π; t]. Since this equation
is quite complex and not very illuminating we do not present it. Rather we shall
study an equation for a reduced distribution function P (X, p; t). The standard
procedure for obtaining a solution for the reduced function [109, 114] is to make a
general series expansion for the total distribution function

P [X, p, ψ, π; t] =
∞∑
n=0

Pn(X, p, t)e
−βπ2/2Hn[π(x, t)/

√
T ]αn[ψ(x, t); t] , (6.3.20)
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where the functions Hn are Hermite polynomials and the αn are functions which
need to be determined. However this technique is not a good starting point for our
system because we know that our equilibrium solution (6.3.12) has non-separable
terms such as

p
∫
πψ′ (6.3.21)

which cannot be reproduced by the general series representation given in Eq.
(6.3.20). Therefore one is forced to make some kind of ansatz for P [X, p, ψ, π; t].
We base our ansatz on the assumption that the phonon degrees of freedom equil-
briate much faster than the kink degrees of freedom, that is we make an adiabatic
ansatz. The specific form of the ansatz is

P [X, p, ψ, π; t] = P (X, p; t)P eq
ph [ψ, π|X, p] , (6.3.22)

where the function P eq
ph [ψ, π|X, p] represents the equilibrium distribution function

for the phonons given that the kink degrees of freedom are fixed. One way to
obtain this function would be to derive a Fokker-Planck equation for the phonons
and solve for the equilibrium distribution function.

6.3.3 Fokker-Planck Equation for the Phonon Variables

The method for deriving the phonon functional Fokker-Planck equation is the same
as that used to derive the full field equation. We begin with a Langevin equation
for the phonons which is obtained from Eq. (3.4.11)

ψtt − ψxx + U ′′[φc]ψ = F(x, t)− εẊφ′c(x−X)− εψt , (6.3.23)

where

F(x, t) ≡ F (x, t)− φ′c(x)

M0

∫
φ′c(x−X)F (x, t) , (6.3.24)

with the white noise term F (x, t) having the same correlation as given in section
6.2. The correlation function for the modified noise term F(x, t) is easily found to
be

〈F(x, t) F(x′, t′)〉 = 2Tε
[
δ(x− x′)− φ′c(x)φ

′
c(x

′)

M0

]
δ(t− t′) , (6.3.25)

= 2Tεδψ(x− x′)δ(t− t′) , (6.3.26)

where the δψ term represents a delta function in the subspace perpendicular to the
translation mode φ′c(x). Using this Langevin equation we can derive the following
Fokker-Planck equation for the ψ field

∂P (ψ, π; t)

∂t
=

∞∫
−∞

dx

{
−π δ

δψ
P (ψ, π; t)− δ

δπ

[(
ψxx − ψU ′′[φc]− επ

)
P (ψ, π; t)

]
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+Tε
δ2

δπ2
P (ψ, π; t)

}
. (6.3.27)

This equation has an equilibrium solution

P eq ≡ e−βHph , (6.3.28)

with Hph given by

Hph =
1

2
π2 +

1

2
ψ2
x +

1

2
ψ2U ′′[φc] . (6.3.29)

That this is an equilibrium solution is not too surprising as it is the term from
the total Hamiltonian which is clearly due to the phonons. This is in fact the
assumption made by WS [67] although to our knowledge they did not give a similar
justification.

6.3.4 Fokker-Planck Equation for the Kink Variables II.

With an equilibrium phonon distribution function (6.3.28) in hand we can now
proceed to derive the Fokker-Planck equation for P (X, p; t). Following the proce-
dure outlined in section 6.3.2 we substitute the ansatz in Eq. (6.3.22) into the full
field Fokker-Planck equation (6.3.11) and carry out the transformation to the kink
variables. Since this calculation is a bit tedious we include it in Appendix H from
which we obtain

e−βHph
∂P (X, p; t)

∂t

= e−βHph
{

(p+
∫
πψ′)

M0(1 + ξ/M0)2

δP (X, p; t)

δX

+ β
(p+

∫
πψ′)

M0(1 + ξ/M0)
P (X, p; t)

∫
dx φ′c

(
Φ′′ − U ′[Φ]

)
+ ε

δ

δp

[
(p+

∫
πψ′)P (X, p; t)

]
+
ε

β

(∫
Φ′2
) δ2

δp2
P (X, p; t)

}
, (6.3.30)

with Hph given by Eq. (6.3.29). In writing Eq. (6.3.30) we have omitted all terms
which have powers of temperature higher than T , again using the fact that the ψ
and π fields, which are assumed to be in equilibrium, are of the order

√
T . Higher

order terms are not relevant since the phonon equilibrium distribution derived in
the previous section is only approximate.

To obtain a Fokker-Planck equation which does not depend on the phonon
variables, we average over the ψ and π fields. Since Hph is quadratic in the both
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ψ and π, all odd terms in either of these fields average to zero leaving us with

∂P (X, p; t)

∂t
= − (1 + 3

〈ξ2〉
M2

0

)
p

M0

δP (X, p; t)

δX
+ ε

δ

δp
(pP (X, p; t))

+ M0
ε

β
(1 +

1

M2
0

〈ξ2〉) δ
2

δp2
P (X, p; t) . (6.3.31)

where here the angle brackets denote

〈f [ψ, π]〉 =

∫
DψDπ f [ψ, π]e−βHph∫

DψD πe−βHph
. (6.3.32)

Averages similar to those required in Eq. (6.3.31) have been carried out by
Miyashita and Maki [115].

In obtaining Eq. (6.3.31) we have made use of the fact that∫
φ′c
[
Φ′′ − U ′[Φ]

]
=

∫
φ′c
[
φ′′c + ψ′′ − U [φc]− ψU ′′[φc] +O[ψ2]

]
(6.3.33)

=
∫
φ′c
[
ψ′′ − ψU ′′[φc]

]
+O[ψ2] , (6.3.34)

=
∫ [
φ′cψ

′′ − ψ
d

dx
U ′[φc]

]
+O[ψ2] , (6.3.35)

=
∫ [
φ′cψ

′′ + ψ′U ′[φc]
]
+O[ψ2] , (6.3.36)

= O[ψ2] , (6.3.37)

where we have made repeated use of

U ′[φc] = φ′′c . (6.3.38)

Therefore the second term on the right-hand side of Eq. (6.3.27) is of order

T 2pP (X, p; t) . (6.3.39)

and has been neglected.
If we further neglect the averaged terms in Eq. (6.3.31), we obtain the

bivariate Fokker-Planck equation for a Newtonian particle [108] with momentum
p. If p were the momentum of the kink, Eq. (6.3.31) would immediately imply
that the kink behaves as a “regular” Brownian particle to lowest order. However,
the variable p represents the total momentum of the field (see section 3.2) and not
the kink momentum, that is

Ẋ =
p+

∫
πψ′

M0(1 + ξ/M0)2
. (6.3.40)
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As before this equation applies only to lowest order since it represents the sta-
tionary path, even so it does tell us that the kink momentum M0Ẋ and the total
momentum p differ by terms of order T , therefore one can interpret Eq. (6.3.31)
as stating that the kink behaves as a Brownian particle to lowest order. If we
include the averaged terms we see that they have the effect of adding temperature-
dependent corrections to the mass and diffusion constant. We have not explicitly
performed the functional integrals because it is not yet clear what additional cor-
rections must be included to account for the fact that p is not the kink momentum.

One of the possible approaches to avoid the complications introduced by the
fact that p is not the kink momentum is to use a different form of the canonical
transformation in which p more closely approximates the kink momentum. This
transformation was mentioned in section 3.2 and leads to the following relation
between p and Ẋ [116]

p = M0(1 + ξ/M0)
2Ẋ . (6.3.41)

Although this form for p still involves the field ψ (through ξ), it does not depend
on the momentum π. Compare this with the expression for p obtained from Eq.
(3.3.28),

p = M0(1 + ξ/M0)
2Ẋ −

∫
πψ′ . (6.3.42)

Clearly the difference is the addition of the momentum carried by the phonon field.
The factors of 1+ ξ/M0 which appear in both expressions represent a renormaliza-
tion of the kink mass due to the phonon field ψ. Since the transformation which
leads to Eq. (6.3.42) is also canonical, it can serve as a basis for our Fokker-Planck
equation. Efforts which utilize this transformation are currently underway.

6.3.5 Higher Order Terms

Now that we have a lowest order result for the kink distribution function, we can
continue to higher order. This involves writing a Fokker-Planck equation for the
phonons using the lowest-order kink distribution function in the ansatz. When this
equation is obtained we plan to calculate the time required to achieve equilibrium
and confirm our ansatz that the phonons equilibrate more quickly than the kink.
These calculations are currently in progress.

Another route to higher order terms would be to start with a phonon equi-
librium distribution function which is valid to higher order in temperature. The
rather obvious choice is the exact equilibrium distribution function itself

P eq
ph [ψ, π|X, p] = e−βH . (6.3.43)

Again making the ansatz

P [X, p, ψ, π] = P (X, p; t)P eq
ph [ψ, π|X, p] , (6.3.44)
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we easily derive the following equation for P(X,p;t):

e−βH
∂P (X, p; t)

∂t

= e−βH
{
− (p+

∫
πψ′)

M0(1 + ξ/M0)2

δP (X, p; t)

δX

+ ε
δ

δp

[
pP (X, p; t)

]
+
ε

β

(∫
Φ′2
) δ2

δp2
P (X, p; t)

}
, (6.3.45)

where we have made use of the fact that∫
dx Π0Φ

′ = p . (6.3.46)

Notice that this equation does not contain a term similar to the second term on
the right-hand side of Eq. (6.3.30), which we eventually showed was of order T 2.
This term does not occur because in using the exact equilibrium solution, much
cancellation occurs. Doing the functional averages over the phonon fields we obtain

∂P (X, p; t)

∂t
= − (1 + 3

〈ξ2〉
M2

0

)
p

M0

δP (X, p; t)

δX
+ εp

δ

δp
P (X, p; t)

+ M0
ε

β
(1 +

1

M2
0

〈ξ2〉) δ
2

δp2
P (X, p; t) . (6.3.47)

This is nearly identical with the result obtained in the previous section, the dif-
ference occuring in the second term in which the momentum derivative operates
only on the distribution function P (X, p; t) instead of on the product pP (X, p; t).
This results in an equation which is not a Fokker-Planck equation. Indeed the
function P (X, p; t) is no longer a probability distribution function since it is not
normalizable. To see this explicitly, note that since we used the exact equilibrium
solution in our ansatz, the “equilibrium” solution P (X, p;∞) must be unity, a fact
which is easily checked. Of course the entire distribution function P [X, p, ψ, π] is
normalizable and the integral of P [X, p, ψ, π] over X, p, ψ, π is conserved for all
time because it satisifies a Fokker-Planck equation, which is in divergence form.
Once again it would be useful to have a momentum variable p which represents the
kink momentum, so to that end the alternate form of the canonical transformation
should be implemented. Then one can derive an equation similar to Eq. (6.3.47)
and attempt to solve it via standard separation-of-variables techniques.

6.3.6 Constant Driving Force

So far we have considered only the undriven system in which we have found that
the kink will execute Brownian motion to lowest order. A physically more relevant
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situation involves the inclusion of a constant driving force which will cause the
kink to move at some finite velocity, contributing to various transport quantities
such as mobility.

Denoting the strength of the constant driver by E0, the full field equation
becomes

Φtt − Φxx + U ′[Φ] = E0 − εΦt + F (x, t) , (6.3.48)

where as before the fluctuating force F (x, t) represents delta-function- correlated
white noise. The Fokker-Planck equation associated with this Langevin equation
is

∂P (Φ,Π0; t)

∂t

=

∞∫
−∞

dx

{
−Π0

δ

δΦ
P (Φ,Π0; t)−

δ

δΠ0

[(
Φxx − U ′[Φ] + E0 − εΠ0

)
P (Φ,Π0; t)

]

+ Tε
δ2

δΠ2
0

P (Φ,Π0; t)

}
. (6.3.49)

We would like to proceed as in the undriven case and derive a Fokker-Planck
equation for a reduced distribution function P (X, p; t) for the kink variables. The
first step is to find a steady-state (cf. equilibrium solution for the undriven case)
solution for Eq. (6.3.48). Formally e−βH with H given by

H =
1

2
Π2

0 +
1

2
Φ2
x + U [Φ]− E0Φ , (6.3.50)

is a solution to Eq. (6.3.48). However, this Hamiltonian is unbounded from below
due to the term linear in Φ and is therefore physically unacceptable. At this
point we realize that the addition of a constant force greatly modifies the problem
and that before we proceed, we should understand these modifications and their
implications.

To understand these some of these modifications, it is useful to refer once
again to the pendulum chain. For example, a constant torque E0 on the pendulum
chain will cause all of the pendula to attain a new equilibrium position Φ0 given
by

U ′[Φ0] = E0 . (6.3.51)

One of the obvious ways to account for this deviation is to use a nonzero ψ0 field.
A more subtle method would be to change the definition of what is meant by a
kink, a possibility which has already been examined in section 5.4. In either case,
one must also deal with infinite energy terms or for the finite system considered
below, terms which diverge with the length of the system. This divergence can be
removed by a suitable subtraction from the Hamiltonian.
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In addition to a constant deformation of the field, we can expect to see a
nonsymmetrical change in the kink waveform [102], that is the kink will achieve a
nonzero “polarization” [37]. This change in the kink profile will be well-localized
about the kink center and move with the velocity of the kink. Again this de-
formation could be included in the definition of the kink, or we could account
for it through the ψ0 field, however since the kink will be moving (either at or ap-
proaching a terminal velocity), ψ0 would have to depend on time which complicates
matters more.

It might seem that the matters discussed in the previous two paragraphs
are more relevant to the dynamics of a kink without the thermal force present.
However in writing a Fokker-Planck equation for the kink variables we will again
need to make an adiabatic ansatz in which we freeze the kink degrees of freedom
and postulate the equilibrium distribution function of the phonons. Since this dis-
tribution function depends on the configuration of the field, we need some detailed
knowledge of the (deformed) kink profile.

Another feature which requires closer attention in the driven case is the
question of boundary conditions. In the undriven case we glossed over this point
because the system is translationally invariant. In anticipation of dealing with
the added complication of the motion of a kink in a position-dependent potential
under the influence of thermal forces [117, 118, 119, 120, 121], we consider some
of the consequences of applying the proper boundary conditions. Before a specific
boundary condition is chosen, we must first realize that in order to properly account
for the correct number of degrees of freedom [75, 48], we must deal with a system
of finite length and take the thermodynamic limit at the end of the calculation.
The boundary condition which is most easily dealt with is the periodic one (mod
(2π)). Having a system of finite length subject to periodic boundary conditions
requires us to use the kink solutions [122, 123] and linearized phonons appropriate
to this system. The analytic solutions for the kink solutions on the finite line are
expressable in terms of Jacobi ellpitic functions [122] whereas the phonons can be
written in terms of theta functions [33].

One can obtain a physical picture of the periodic boundary conditions by
imagining the pendulum chain “bent” into a circle, connecting the first and last
pendula together. In traversing this circle the angular deviation of the pendula
changes smoothly from zero to 2π (=0) representing the kink. An alternate method
of viewing the periodic system is to consider a “kink lattice”. In this case we
imagine a long pendulum chain divided into cells of length l. Each cell contains a
kink, however this time the total angular deviation experienced in going from the
beiginning to the end of the kink can be less than 2π [124]. An additional feature
of this kink lattice approach is the presence of two phonon bands separated by
a gap [124]. The first of these bands represents vibrations of the kink lattice
itself, the zero frequency mode again representing a rigid translation of the entire
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lattice. The second band is similar to the phonons described in section 4.1. In
the thermodynamic limit this first band becomes negligible and we approach the
dispersion relation which applies to the infinite system.

The stage is now set for carrying out the calculations begun in this chapter
to higher order. Not only can the temperature dependent mass and diffusion
coefficients be calculated, but the question of the approach to equilibrium can now
be attacked. In addition, many of the added difficulties which enter the problem
when a constant driver is added have been examined and possible solutions have
been considered. As a final step, one might try to use the variable transformation
to study the more general problem of a Boltzmann equation.



Chapter 7

Kink-Antikink Collisions in φ4

So far we have dealt with the use of a single collective coordinate which represents
the center of mass of a Klein-Gordon kink. Because we have a canonical transfor-
mation from the original field variables to the “kink” variables, this method is on
very firm ground and therefore is expected to yield reasonable results. However,
the rigor lent by this transformation is also a weakness since one cannot expect to
find the appropriate canonical transformation for an arbitrary system (assuming
one even exists). Since this canonical transformation is based on the physically
reasonable decomposition

Φ(x, t) = φc(x−X(t)) + χ(x−X(t), t) ,

one would hope that similar physically reasonable ansätze which do not necessarily
represent canonical transformations would also prove useful. In order to explore
this possibility, we consider in this chapter the use of two collective coordinates
to model the kink-antikink collisions in φ4 field theory. We begin by reviewing
the behavior observed in the numerical simulation of the PDE. In section 7.2 we
outline collective coordinate approaches which have been used and introduce an
ansatz based on two collective coordinates. Section 7.3 contains plots and limiting
analytic forms for the coordinate-dependent masses and potential which one ob-
tains from the averaged Lagrangian. The equations of motion are presented and
their numerical solution discussed in section 7.4. These solutions of the equations
indicate that the ansatz breaks down when the two kinks collide. The limiting case
in which the kinks are very close is examined in section 7.5 in which we find that
one of the coordinates undergoes very rapid changes as the separation between the
kinks goes to zero. A new ansatz based on the original one but which includes
“relativistic” terms is proposed in section 7.6. Simulations of the equations of
motion which result from this ansatz are currently being carried out.

113
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7.1 Observed Phenomena in Numerical Simula-

tions

As mentioned in the introduction, the φ4 system is not integrable but it does
possess exact kink(+) and antikink(-) solutions

φK(x) = ± tanh
(x− x0)

m
√

2
. (7.1.1)

Since the φ4 system is not integrable but possesses solitary wave solutions (not
solitons), it of interest to study the interaction between two such solitary waves.
Several investigators [125, 126, 127, 128, 129, 130, 131, 132] have studied the colli-
sion of a kink and antikink by the direct numerical integration of the PDE. Initial
studies showed that when the kink velocities were above some critical value vc, the
kinks scattered off of one another inelastically transferring energy to other modes
of the system such as radiation (“phonons”). For velocities less than vc the kinks
were found to form a bound state, again transferring some energy into the radi-
ation degrees of freedom. Further investigation showed that for certain velocity
intervals vi < v < vj < vc (see Figure 7.1) the kinks did not form a bound state
but scattered off to ±∞. Similar phenomena have been observed in other nonin-
tegrable systems such as the parametrically modified sine-Gordon [50] and double
sine-Gordon [133] systems. These “resonance windows” have been quantitatively
explained by Campbell et al. [15] in terms of an exchange of energy between the
kink translational energy and a localized mode known as the “shape mode”, which
can be thought of as representing a modification of the kink solution. The basic
idea is that when the kinks first collide, there is an energy transfer into the shape
mode. The kinks then move apart, but not having enough energy to overcome the
attractive potential which exists between them (i.e. some energy was given to the
shape mode), they fall back toward one another. When they collide again, the
energy in the shape mode can be transferred back to the translational motion if
the time between the collisions obeys the following resonance condition:

ω2T = δ + 2nπ ,

where ω2 =
√

3/2 is the frequency of the shape mode. Such a transfer of energy
allows the kink and antikink to overcome the attractive potential and escape to in-
finity. Using these ideas Campbell et al. have been able to predict the bounds vi of
the resonance windows which are in good agreement with the results obtained from
the numerical simulations. The analysis, however treats the collision as a “black
box” and does not provide any details of the collision as do the PDE simulations.
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Figure 7.1: Results of a numerical simulation showing the final kink velocity after

a φ4 KK̄ collision as a function of the initial kink velocity. A final velocity of zero

indicates the formation of a bound state. Taken from Ref. 15 with the permission

of the authors.
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7.2 Collective Coordinate Approaches

To gain an understanding of the collision process without solving the PDE, several
collective coordinate methods have been put forth to study the KK̄ collisions.
Although Aubry [130] was the first to observe the resonance structure, Kudryavt-
sev [125] was the first to implement coordinates which showed that the effective
potential between the kink and antikink was attractive. In another early study,
Sugiyama [131] introduced collective coordinates which represent the center of
mass of the kinks and the amplitudes of the shape mode and radiation degrees
of freedom. His analysis was purely analytic, producing an attractive potential
in which the kinks moved and a solution for the shape mode coordinate which
exhibited harmonic oscillations.

A collective coordinate ansatz very similar to that used by Sugiyama was
introduced by Jeyadev and Schrieffer [134]. In the notation established in section
3.1 the ansatz has the form

ΦA(x, t) = 1 + tanh y− − tanh y+

+ A(t)

[
fb,2(y−) cos

ωb,2(t− βx)√
1− β2

− fb,2(y+) cos
ωb,2(t+ βx)√

1− β2

]

+
∑
k

Bk(t)

[
fk(y−) cos

ωk(t− βx)√
1− β2

− fk(y+) cos
ωk(t+ βx)√

1− β2

]
(7.2.1)

with the definitions

y± =
x± α(t)√
2
√

1− β2
, β = α̇ . (7.2.2)

Substitution of this ansatz into the Lagrangian density and integration over space
yields a Lagrangian which depends on the collective coordinates α(t), A(t), Bk(t)
and their time derivatives. The resulting equations of motion are quite complex
when all of the relativistic and phonon terms are included and therefore only the
lowest order terms in the velocity were included in the simulations, the phonon
terms being dropped entirely. The numerical results based on this model showed
that the kinks attained relativistic velocities (in fact β became > 1). When this
occurred the amplitude of the shape mode also became large, which in turn caused
the velocity to diverge.

A slightly different ansatz

ΦA(x, t) =
m√
λ

{
1− tanh

[my0(x− x0)√
2

]
+ tanh

[my0(x+ x0)√
2

]}
. (7.2.3)

was put forth by Campbell et al. [15]in their original work describing the PDE
simulations . This ansatz represents a kink-antikink pair moving in opposite di-
rections according to the center of mass variable x0(t) (see Figure 7.2). Like the



117

Figure 7.2: Schematic representation of the ansatz in Eq. (7.2.3)



118

previous ansätze, there is a collective coordinate x0 which describes the center of
mass motion of the kinks. The y0 coordinate takes the place of the shape mode
contribution by allowing the width of the kinks (1/y0) to vary as a function of time.
The x0 collective coordinate is much like the X coordinate used in the previous
chapter in that it is a result of the translational invariance of the original equations.
The y0 coordinate, however appears merely as a parameter in the ansatz. Equation
(7.1.1) is a solution of the field equations only for y0 = 1, x0 being able to take on
any value. Therefore the y0 coordinate has been termed a “parametric collective
coordinate” [42, 15] while the x0 coordinate is a “linear collective coordinate”. No
matter what the values of x0 and y0, the ansatz given in Eq. (7.2.3) is not an
exact solution of the original field equations and it does not represent a canonical
transformation to a new set of variables; however in view of the explanation of the
resonance windows given by Campbell et al., it is certainly a reasonable choice.

Proceeding along the same lines as Jeyadev and Schrieffer [134] , we substi-
tute this ansatz into the Lagrangian density

L =
1

2

(∂tΦA

∂t

)2
− 1

2

(∂xΦA

∂t

)2
+
λ

4
(Φ2

A −
m2

λ
)2 , (7.2.4)

and integrate over x, yielding a Lagrangian

L(x0, ẋ0, y0, ẏ0) =
1

2
m1(x0, y0)ẋ

2
0 +m2(x0, y0)ẋ0ẏ0 +

1

2
m3(x0, y0)ẏ

2
0

− V (x0, y0) , (7.2.5)

where the expressions for the masses and potentials along with some useful limits
are given in Appendix I. One of the interesting features of this Lagrangian and the
associated Hamiltonian is the appearance of coordinate dependent masses. Since
the masses depend on the coordinates, we cannot use the usual potential energy
arguments to give us an idea of what the solution is. One might ask whether one can
somehow make a transformation to a new set of variables x′0, y

′
0 in terms of which

the masses are coordinate independent. Such a procedure is available for systems
with only one coordinate [135] and merely requires finding the transformation to
a new variable q(q′) such that

m(q)q̇2 = m̃ ˙̃q
2
. (7.2.6)

This equation is easily integrated to yield

q̃(q)− q̃(q0) =

q∫
q0

dq′

√
m(q′)

m̃
. (7.2.7)

The analogous procedure for our system involves first diagonalizing the kinetic
energy terms in Eq. (7.2.5), followed by the integration of a coupled set of ODEs.
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Since we are not assured of finding a solution of these equations (even numeri-
cally), this method shows little promise. Since we have to deal with the coordinate
dependent masses and potentials, it is helpful to become acquainted with this
dependence.

7.3 The Potential V (x0, y0) and Masses mi(x0, y0)

As mentioned above, the effective mutual potential experienced by the kink and
antikink is attractive as is shown in Figure 7.3. One might argue that since the
masses depend on the coordinates, interpreting the effective potential as attractive
is not valid; however one can always restrict the coordinates to a small enough range
so that the masses are essentially constant. The linear behavior in the potential
for values of x0 < 0 represent the fact that the kinks cannot pass through one
another to infinity. One can understand this by considering the field amplitude for
a configuration in which the kinks have passed through one another (see Figure
7.2). In the segment of length L, the field amplitude is a constant φ0. The energy
content of this segment is (φ2

0 − 1)2L which diverges linearly with L as shown in
Figure 7.3.

The masses m1(x0, y0),m2(x0, y0) and m3(x0, y0) are plotted in Figures 7.4-
7.6. (It should be noted that in all of the plots, the minimum value of y0 plotted is
not 0. The scale begins at y0 = 0 because the graphics package used automatically
scales the plots so that the numbers on the scale are “round” numbers.) For large
x0,m1 approaches a constant value which is easily shown to be (see Appendix I)

m1(x0, y0) −→
8

3

√
2m3y0/λ , (7.3.1)

which is twice the mass of a single kink. Figure 7.5 shows that for small x0, m2

vanishes linearly while m3 vanishes quadratically. One of the consequences of these
vanishing masses is that for x0 = 0 the kinetic energy is entirely carried by the
translation of the kinks. More importantly, we see from the Lagrangian that for
m2 and m3 equal zero, the value of ẏ0 is arbitrary, a fact that will give rise to
numerical trouble when the equations of motion are integrated. Finally we note
that the mass m3 shows a divergence as the y0 coordinate approaches zero. All of
the limiting properties of the potential and masses are summarized in Table 7.1.

From the analytic expressions for the masses and potentials given in Ap-
pendix I one might expect that as either the x0 or y0 coordinates tends to zero,
these quantities might not be computed accurately since both the numerator and
denominator tend to zero. To avoid such problems the limits of the potentials
and masses were taken analytically. With the aide of the symbolic manipulation
program MACSYMA [136] the Taylor series were taken up to and including terms
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Figure 7.3: The effective potential V (x0, y0).
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Figure 7.4: The mass m1(x0, y0).
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Figure 7.5: The mass m2(x0, y0).
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Figure 7.6: The mass m3(x0, y0).
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z0 → 0 z0 →∞

V1(x0, y0)
8
√

2m5x2
0y

3
0

15λ
2
√

2m3y0
3λ

V2(x0, y0)
8
√

2m5x2
0y0

3λ
2
√

2m3

3λy0

m1(x0, y0)
8
√

2m3y0
3λ

[
1− 2m2x2

0y
2
0

5

]
8
√

2m3y0
3λ

m2(x0, y0)
8
√

2m3x0

3λ

[
1
2
− 2m2x2

0y
2
0

5

]
0

m3(x0, y0)
8π2

√
2m3x2

0

45λy0
8m√
2λy30

1
3

(
π2

3
− 1

)
Table 7.1: Limiting values for the potentials and masses for z0 approaching 0 and

∞. The total potential V is the sum of V1 and V2. Analytic expressions for V1 and

V2 are given in Appendix I.

on the order of z10
0 with z0 = mx0y0/

√
2. To assure a smooth transition from the

analytic to Taylor series expressions both quantities were computed for a variety of
small values of z0. For z0 of the order of 0.01, the expressions gave the same values
to at least 9 significant digits. As a further check on the analytic forms given in
Appendix I, the integral expressions were numerically evaluated. Again we found
the analytic and numerically integrated values of the masses and potential agree
to at least 9 significant digits.

7.4 Equations of Motion

Application of the Euler-Lagrange method yields the following equations of motion
for x0 and y0:

m1ẍ0 +m2ÿ0 +
1

2

∂m1

∂x0

ẋ2
0

+
∂m1

∂y0

ẋ0ẏ0 +
∂m2

∂y0

ẏ2
0 −

1

2

∂m3

∂x0

ẏ2
0 +

∂V

∂x0

= 0 , (7.4.1)

m3ÿ0 +m2ẍ0 +
1

2

∂m3

∂y0

ẏ2
0
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Figure 7.7: Position (solid) and velocity (dashed) for a “wobbling kink” solution.

+
∂m3

∂x0

ẋ0ẏ0 +
∂m2

∂x0

ẋ2
0 −

1

2

∂m1

∂x0

ẋ2
0 +

∂V

∂y0

= 0 . (7.4.2)

In general this set of coupled equations must be solved numerically; however, an
analytic solution can be found in the limiting case in which x0 approaches ∞.
Guided by the numerical integration of the PDE, one is led to search for a solution
in which the velocity of the kinks oscillates about a constant value. Such a solution
has been obtained by Campbell [137], with the period of oscillation given by

T = 2π

√(π2

6
− 1

)(
1− v2

f

)
≈ 5.04

√
1− v2

f , (7.4.3)

where vf is the mean of the final velocity. This analytic result proves to be a good
check of the numerical integrator. In Figure 7.7 we present results of the numerical
integration of Eqs. (7.4.1-2) for initial conditions

x0 = 20 , ẋ0 = 0.2 , y0 = 1 , ẏ0 = 0 . (7.4.4)

Making a rough measurement from this graph we find that the oscillation period
is 4.94 compared with 4.94 as computed from Eq. (7.4.3) with vf approximated
by 0.196.
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In the above example we started the kink and antikink moving away from
each other so that a comparison could be made with analytic results (initial con-
ditions in which the kink and antikink collided yield simliar results). Figure 7.8
shows the integrated values of the variables and their time derivatives for initial
conditions for which the kink and antikink collide. Initially the kink and antikink
travel toward each other with initial velocities of -0.2 and +0.2 respectively. When
the kink and antikink are approximately 3 units apart they begin to accelerate
towards one another under the influence of their mutually attractive potential. At
x0 the the kinks very abruptly bounce off of one another after which they move
apart, their velocities experiencing small oscillations which represent a transfer
of energy into the oscillating width (shape mode) of the kinks (see Figure 7.8).
From Figure 7.1 we see that for the initial velocity of -0.2, the kinks should indeed
eventually scatter to ±∞; however the numerical simulations of the PDE indicate
that the kink and antikink actually pass through one another (x0 < 0) before they
turn around and move off to ±∞. Furthermore, before they separate to ±∞, they
should experience a second collision in which the energy given to the shape mode
oscillation is returned to the translational motion allowing them to escape. This
asumes that the ansatz will capture all of the details of the collision which one
cannot expect since we allow for no radiation degrees of freedom. However, one
would hope to be able to capture the resonance windows. Additional simulations
with initial velocities which are not in the windows, that is, initial velocities for
which we should see a bound state formed, also show this type of hard bounce.
Finally in Figure 7.8 we see the y0 coordinate is well behaved until it increases
rapidly when x0 approaches 0. The oscillations which occur after this sharp spike
again reflect the sharing of energy between the translational kinetic energy and
the energy associated with the changing kink width.

In Figure 7.9 we examine more closely the region for which the “hard
bounce” seen in Figure 7.8 occurs. The initial conditions used for this run cor-
respond to the values of the variables and their derivatives at t = 42 in Figure
7.8. Here we see that the hard bounce at x0 = 0 in fact occurs smoothly on a
smaller time scale. Examination of the plots of the y0 coordinate and its derivative
on this finer time scale are further causes of concern since a y0 value of 40 rep-
resents extremely sharp kinks, another feature which is not observed in the PDE
simulations. Another interesting feature of these plots is that the kink velocities
approach -1 and then turn around, echoing the results of Jeyadev and Schrieffer
[134]. The fact that the velocity gets so close to its relativistic limit of -1 seems to
indicate that a “relativistic” treatment of the problem is in order. This possibility
is outlined in section 7.6.

Given these rather unexpected and somewhat unphysical results, one im-
mediately questions the accuracy of the codes used to integrate the equations. We
have already mentioned in section 7.3 that extreme care has been taken in the eval-
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Figure 7.8: The kink position x0 (solid) and inverse width y0 (solid) along with

their time derivatives (dashed) as a function of time.
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Figure 7.9: Blow up of the “hard bounce” region of Figure 7.8
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Figure 7.10: Hamiltonian vs. time during the bounce.

uation of the potential, masses, and their derivatives, and therefore they can be
ruled out as a possible problem. Next one questions the accuracy of the numerical
integrator used. Since a Hamiltonian exists for this problem, namely

H(x0, ẋ0, y0, ẏ0) =
1

2
m1(x0, y0)ẋ

2
0 +m2(x0, y0)ẋ0ẏ0 +

1

2
m3(x0, y0)ẏ

2
0

+ V (x0, y0) , (7.4.5)

we can monitor it as a function of time as a check on the numerical integrator. In
Figure 7.10 we plot the Hamiltonian as a function of time corresponding to the
variables plotted in Figure 7.9. From this plot we see that the Hamiltonian is indeed
quite well conserved, although there is obviously something drastic happening when
x0 = 0. An even greater accuracy, up to about 1 part in 10−9 can be achieved
by decreasing the error tolerances of the numerical integrator. The fact that the
Hamiltonian is conserved so well, coupled with the fact that the code accurately
reproduces the oscillation period, indicates that the equations have been coded
properly and that the integrator is working. This leads us to consider what features
of the ODEs could cause such behavior, or more importantly, to find the root of
the problem in the original ansatz.
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7.5 Limiting Analysis: x0 → 0

Since the problem occurs for small values of the x0 coordinate, it is useful to
examine the equations of motion in this limiting case. Using the results from
Table 7.1, one arrives at the following equations after a bit of algebra:

ẍ0 ≈ x0

[
Dm2y2

0(ẋ
2
0 − 1) +

C

y2
0

− 2m2

]
+O(x2

0) , (7.5.1)

x0ÿ0 ≈ −2ẋ0ẏ0 + Ey3
0x0(ẋ

2
0 − 1) +O(x2

0) , (7.5.2)

with the constants C,D and E given by

C =
π2

15
≈ 0.65 (7.5.3)

D =
2

5

(
4C − 3

4C − 1

)
≈ −0.09 (7.5.4)

E =
2

5
(C − .25)−1 ≈ 0.98 . (7.5.5)

Since these equations are valid only for small x0, one cannot divide the equation
for y0 by x0. The numerical integrator used to solve the equations of motion is an
algebraic-differential equation solver, which means that the form for the y0 equation
given in Eq. (7.5.2) is what is used in the code. Even though the integrator can
handle such a potential singularity, it is clear from Eq. (7.5.2) that we can expect
some very rapid changes in the y0 coordinate as x0 → 0.

Another interesting feature of the limiting equations is the appearance of
the factors ẋ2

0 − 1. Recall that the velocity in Figure 7.9 reached a minimum
value of -1 before turning around. Since this behavior has been observed for initial
velocities other than that shown in Figure 7.9, one is led to look for zeroes of the
right-hand side of Eq. (7.5.1) ( zeroes in ẍ0 correspond to “turning points” in ẋ0).
Such a turning point would occur for ẋ2

0 = 1 if

C

y2
0

= 2m2 . (7.5.6)

In the simulations we have taken m = λ = 1 (these choices were made so that
direct comparisons could be made with the PDE simulations [15]), so Eq. (7.5.6)
requires that y0 ≈ 0.57, a condition which does not hold in Figure 7.9 and in other
simulations. Presently an effort is being made to search for zeroes of the right-
hand side of the exact x0 equation to see if a turning point for ẋ2

0 = 1 is a generic
feature.

From the limiting forms of the equations of motion, we see that there must
be some very rapid behavior near x0 = 0. This fact is further supported by an
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examination of the Hamiltonian surface on which the motion must occur. The
Hamiltonian surface is a three dimensional surface embedded in the four dimen-
sional state space (x0, ẋ0, y0, ẏ0). The most convenient method of examining such
a surface is to fix one of the coordinates and examine a two dimensional section of
the three dimensional surface. To compute values on this surface, it is easiest to
solve for either ẋ0 or ẏ0 using the quadratic formula which yields

ẋ0(x0, y0, ẏ0;H0) = −m2ẏ0 ±
1

m2

√√√√m2
2ẏ

2
0 − 2m1

(
1

2
m3ẏ2

0 + V −H0

)
, (7.5.7)

ẏ0(x0, y0, ẋ0;H0) =
−m2

m3

ẋ0 ±
1

m3

√√√√m2
2ẋ

2
0 − 2m3

(
1

2
m1ẋ2

0 + V −H0

)
.(7.5.8)

Using the limiting forms given in Table 7.1 we can compute the values that ẏ0

must take as x0 → 0:

ẏ0(x0, y0, ẋ0;H0) →
αy0

x0

[
−ẋ0 ±

√√√√ẋ2
0 − β

(
m1ẋ2

0

2
+ V −H0

)]
, (7.5.9)

with α and β given by

α =
15

2π2
, (7.5.10)

β =
π2

5
√

2m3y0

. (7.5.11)

This limiting form for ẏ0 tells us that for finite ẋ0, unless

1

2
m1ẋ

2
0 + V −H0 = 0 , (7.5.12)

ẏ0 will diverge as x0 approaches 0. If Eq. (7.5.12) is satisfied, we find that ẏ0 is
zero. This type of behavior in ẏ0 is confirmed in Figure 7.9. If we plot the values
of ẏ0 as computed from the exact quadratic formula given in Eq. (7.5.8) we find
similar behavior. Figure 7.11 shows plots of these ẏ0 values for fixed ẋ0. Plots
for different values of ẋ0 have similar features. Since the coordinates must evolve
such that they remain on this Hamiltonian surface (also verified by the plots of
the Hamiltonian such as Figure 7.10), we must conclude that as x0 approaches
zero, the ẏ0 parameter must take on very large values. This in turn causes y0 to
take on large values which corresponds to a very sharp kink, much sharper than
is physically reasonable. Therefore it appears that the ansatz in Eq. (7.2.3) is
not sufficient to capture the observed behavior. Two possible deficiences of the
ansatz are that it does not include any radiation degrees of freedom and that it
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Figure 7.11: A two-dimensional Hamiltonian section for fixed ẋ0 = −0.9.
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does not include relativistic terms. Since the actual simulations showed that for
small initial velocities very little energy was carried via emission of radiation, it
would seem that the relativistic corrections are at the root of the problem. This
is further supported by the fact that in all of the simulations of the ODEs, the
velocities attained were relativistic. In addition we can look at the values of ẋ0

allowed by the Hamiltonian. In Figure 7.12 we plot the Hamiltonian section for
fixed y0 = 1. Here we see that all of the velocities for x0 near zero are indeed close
to -1. What is even more striking is the fact that the velocity never exceeds -1,
but turns around just before the limiting velocity is attained.

7.6 A “Relativistic” Ansatz

Since the original Lagrangian is Lorentz invariant, the boosted kink

tanh
[ m(x+ x0)√

2
√

1− ẋ2
0

]
, (7.6.1)

is a solution to the equations of motion. This prompts one to modify the ansatz
given in Eq. (7.2.3) to include the relativistic “γ” factor

ΦA(x, t) =
m√
λ

{
1− tanh

[my0γ(x− x0)√
2

]
+ tanh

[my0γ(x+ x0)√
2

]}
, (7.6.2)

with γ given by

γ ≡ 1√
1− ẋ2

0

. (7.6.3)

By including the factor of γ we ensure that the width of the kink and antikink
will decrease as the velocity increases. This may in fact take the place of the y0

parameter, however we shall keep both coordinates initially to ensure the greatest
flexibility.

Again we insert this ansatz into the expression for the Lagrangian density
and integrate over space to obtain an effective Lagrangian

L(x0, ẋ0, ẍ0, y0, ẏ0) = γ2

[
1

2
m̃1(x0, y0)ẋ

2
0 + m̃2(x0, y0)ẋ0ẏ0 +

1

2
m̃3(x0, y0)ẏ

2
0

]

+
m4
√

2

2λ

{
4γẋ0ẍ0

m3y2
0

[
2ẏ0 + γ2y0ẋ0ẍ0

]
w3(z0) +

2γ3x0y0ẋ
2
0ẍ0

m
w3(z0)

}
− γ2Ṽ1(x0, y0)− Ṽ2(x0, y0) , (7.6.4)

where

m̃i ≡ mi(x0, γy0) , Ṽi ≡ Vi(x0, γy0) , (7.6.5)
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Figure 7.12: A two dimensional Hamiltonian section for fixed y0 = 1.
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and the expressions for the functions wi(z0) are given in Appendix I. Since this
effective Lagrangian depends on the second time derivative of x0, one must use
second order variational methods [138, 139] to obtain the Euler-Lagrange equations
of motions. Since the Lagrangian does not depend of the second time derivative
of y0, the standard Euler-Lagrange equation applies. The equation for x0 is [140]

d2

dt2
∂L

∂ẍ0

− d

dt

∂L

∂ẋ0

+
∂L

∂x0

= 0 . (7.6.6)

Due to the additional terms in the Lagrangian and the equation of motion for
x0, the resulting set of coupled equations for x0 and y0 are extremely long and
complex. Presently these equations are being derived and coded.

Although no results are yet available for the set of equations which result
from carrying out the calculations in Eq. (7.6.6), the data in the previous sec-
tions indicates that a “relativistic” approach as outlined has some promise. The
failure of the intuitive ansatz used in the previous sections indicates that either
the relativistic corrections are needed or that a more sophisticated ansatz is re-
quired. Perhaps one needs to include the phonon degrees of freedom to achieve
the quantitative agreement sought.



Chapter 8

Conclusions and Future Work

One of the most important results of this work is the formulation of a Newton’s
equation for the kink center of mass variable X(t). The force which the kink ex-
periences is found to depend on the phonons radiated by the interaction of the
kink with the perturbation. The fact that these phonons appear in the kink center
of mass equation demonstrates that the kink is an extended particle with inter-
nal degrees of freedom. This conclusion could be reached from purely numerical
experiments in which the original PDE is solved “exactly”. However the explicit
separation of the degrees of freedom into kink and phonon components makes the
analysis more physical. The first-order motion is especially easy to deduce since
an effective potential exists for the kink center of mass variable. The second order
motion is complicated by the appearance of the phonon degrees of freedom, but it
is still tractable numerically. The specific applications of the perturbation theory
presented here were chosen to mimic as closely as possible situations which might
appear in real systems. One could easily imagine other perturbations which are
less accurate approximations of the real situation (such as delta function poten-
tials) for which the entire analysis (through second order) could be carried out
analytically. This was illustrated when the thermal fluctuations were studied in
Chapter 6. There we were able to derive a Fokker-Planck equation which again
showed that the kink behaves, to lowest order, as a Newtonian particle.

One of the most interesting aspects of the present perturbation theory is the
ability to describe shape changes of the kink waveform. In section 5.6 we saw that
the ψ field accurately predicted the correct shape change for a kink which entered a
new medium in which the limiting propagation speed was higher than the original
medium. This shape change illustrates the fact that although the kink obeys
Newtonian dynamics, it does not behave as a point particle; rather it behaves like
an extended, deformable particle. The fact that the kink is an extended particle is
not surprising, especially when one views the kink in the context of the pendulum
chain. Here, we see that the kink is the result of a “cooperation” of many of the

136



137

individual single pendulum degrees of freedom. The transformation which is the
basis for our perturbation theory simply redistributes these degrees of freedom so
that the kink may be described by only one coordinate.

In addition to describing kink shape changes, the ψ field must describe any
phonons emitted and their influence on the kink motion. In section 5.3 we saw
that one of the results of this interaction between the kink and phonon degrees
of freedom is a transfer of energy from the kink to the phonons. This evidenced
itself in a final kink velocity which was slightly lower than the initial velocity.
In addition, we observed oscillations in the velocity about this final value, again
indicative of a transfer of energy to and from other modes. One could imagine
that similar energy transfer could occur when the kink-bearing system is coupled to
different degrees of freedom. For example, in magnetic systems the kink represents
a domain wall while the phonons represent spin waves. If the magneto-acoustic
coupling constant is strong enough, one might find additional lattice vibrations
induced when the kink collides with a magnetic impurity. This would possibly be
observable as a contribution to the kink “viscosity”.

Having gained some confidence with the method presented, we can look
ahead to see other possible applications of the method. Due to the rather general
form which the perturbation can take, many other relevant perturbations can be
studied. It should be remembered that there are some interesting situations for
which there is no perturbation present but in which the initial conditions are
nontrivial. The simulations of Wada and Schrieffer [67] and Ogata and Wada [68]
fall into this class, since they considered the collision of a prepared phonon packet
with a stationary kink. To lowest order they find that the phonon packet is merely
phase-shifted relative to the case in which no kink is present. To higher order they
find the generation of reflected and transmitted phonons of frequency 2ωq̄ where
q̄ is the mean wave vector of the phonon packet. In addition the first and second
order phase shifts experienced by the kink could be computed as a function of the
mean frequency q̄ and compared with the previous results. Through the use of the
collective coordinate X(t) one could hopefully come to a better understanding of
the momentum transfer which occurs in these collisions.

Although the formal theory derived in Chapter 3 is set up to study time-
dependent perturbations v(x, t), our codes have not as yet been generalized to
handle this situation. One of the interesting problems which could be studied with
this capability is the damped, harmonically driven sine-Gordon equation. This
particular equation has been the subject of several studies [28, 141, 142]. Although
these simulations were carried out on the finite line, it would be interesting to see if
the same types of chaos observed there arise in the infinite system. Since our ansatz
includes only one kink and assumes that the phonon field ψ is small, the standard
period-doubling route to chaos would evidence itself indirectly by the development
of an instability. The instability would evidence itself by the developement of
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a phonon field which would try to produce another kink-like structure. Since
this would require a rather large phonon field, this approach would only be able
to indicate the onset of the period-doubled regime. The method presented by
Tomboulis and Woo [46] may be better suited to study this system since it allows
for more than one soliton component to be present. Even better suited to study
this problem are the modulation equations derived by Erconali, McLaughlin and
Forest [36] which are tailored to study the finite line with multiple solitons present.
Currently Flesch and Forest are applying these equations to this problem. In
particular they are trying to reproduce the behavior observed by Ariyasu and
Bishop [143] in their simulations. In particular, Ariyasu and Bishop have observed
an interesting hystersis in the damped driven sine-Gordon equation.

Another area which merits further study is our work involving the Fokker-
Planck equation for the phase-space distribution function P (X, p; t). In having
derived the derivative transformation (see Appendix G) a major technical prob-
lem has been solved. It now remains to develop a convergent procedure which
yields corrections to the first-order distribution functions already derived. In or-
der to verify (or negate) the adiabatic assumption which allowed us to factor the
phase-space distribution function into a product of a phonon and kink distribution
function, the time dependence of solutions to the first-order Fokker-Planck equa-
tions must be investigated. Having resolved the question of equilbration times for
the undriven system, a new steady state ansatz would be required to study the
driven system. The resulting equations would allow us to calculate transport coef-
ficients such as mobilities. One could attack the problem of transport from a more
fundamental Boltzmann equation [144] approach. Once again the canonical nature
of the transformation is of great benefit since the Jacobian of the transformation
is unity.

Besides using the present theory to study additional applications, there is
additional formal work to be done. As it stands, our theory is restricted to the
study of low velocity kinks. Since the “Lorentz-boosted” solution

φc
[ x− vt√

1− v2

]
satisifies the unperturbed equation, one wonders if a canonical transformation is
available which uses such a solution as a starting point. If such an approach fails,
one might be able to make some progress using covariant collective coordinates
[145, 146, 147].

A further relevant question involves the quantization of the system. One of
the interesting problems to be attacked is soliton tunneling in the presence of per-
tubations. So far, however, only the statistical mechanics of the quantum system
system has received attention [148, 149]. Tomboulis [45] approaches the problem
semiclassically by promoting the variables to operators and the Dirac brackets to
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commutators, a procedure which is well defined because the transformation to the
new variables is indeed canonical. A rather subtle point in carrying out this pro-
motion involves using the correctly symmetrized form for the momentum operator
Π0. Once this promotion is completed one expands the ψ field in terms of normal-
mode creation and annihilation operators. Transition matrix elements can then be
calculated.

Gervais et al. [47] approach the quantization problem for the unperturbed
system via a functional integral approach, writing the action in terms of the new
variables. The point canonical transformation to the new variables in the action
must be made carefully in order to be consistent [150]. When these points are
taken care of, both the semiclassical and functional integral methods yield the
same results to lowest order. Diagrammatic techniques based on the semiclassical
approach [112] and functional integral [151] methods as applied to the perturbed
problem are currently being investigated.

All of the quantum calculations mentioned above are carried out in the one
soliton sector of the Fock space, that is to say, only one soliton is assumed to be
present. Since many solitons can be present in a system, one really needs a formal-
ism which can handle such instances. Of particular importance is the two-soliton
case since the interaction between the solitons can greatly change the final state of
the system as has been seen in the φ4 kink-antikink collisions studied in Chapter
7. A rather natural approach would be to have creation and annihilation operators
for the solitons. This approach has only been briefly studied by Mandelstam [152].
The collective-coordinate approach will undoubtedly be of value in these future
investigations.



Appendix A

Equations of Motion via
Euler-Lagrange Formalism

In this appendix we derive the equations of motion for the dynamical variables and
from these we derive second-order equations for X(t) and ψ(x, t). As mentioned in
Chapter 2, this involves taking the Dirac bracket of the dynamical variables with
the Hamiltonian. To this end, the Hamiltonian was written as the sum of three
terms, an unperturbed term H0, an interaction term Hint, and Hψ0 which involves
terms proportional to the background field ψ0(x, t). The reason for writing H in
this particular form is that Tomboulis [45] has already computed the Dirac bracket
of the dynamical variables with the unperturbed contribution to the Hamiltonian.
The results of these calculations are [45]

{X,H0} =
p+

∫
πψ′

M0(1 + ξ/M0)2
, (A.1)

{p,H0} = 0 , (A.2)

{ψ,H0} = π(x, t) +
p+

∫
πψ′

M0(1 + ξ/M0)2

[
ψ′(x, t)− 1

M0

ξφ′c(x)

]
, (A.3)

{π,H0} =
p+

∫
πψ′

M0(1 + ξ/M0)2

[
π′(x, t) +

1

M0

φ′c(x)
∫
πφ′′c −

p+
∫
πψ′

M0(1 + ξ/M0)
φ′′c (x)

]

+ψ′′(x, t)− V ′(ψ, φc) +
1

M0

φ′c(x)

(∫
ψ′φ′′c +

∫
V ′φ′c

)
. (A.4)

Using the brackets given in Eqs. (3.3.10-11) one can calculate the following brackets

{X,Hψ0 +Hint} =
A(X, t)

M0(1 + ξ/M0)
, (A.5)

{p,Hψ0 +Hint} = −
∫
π′(x−X, t)ψ̇0(x, t) +

∫
φ′′c (x−X)ψ′0(x, t)
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+
p+

∫
πψ

M0(1 + ξ/M0)

∫
φ′′c (x−X)ψ̇0(x, t)

+
∫
ψ′′(x, t)ψ′0(x+X, t) +

+
∫
U ′[Φ(x, t)][φ′c(x−X) + ψ(x−X, t)]

+
∂

∂X

∫
v(x, t)F [Φ(x, t),Φx(x, t)] , (A.6)

{ψ(x, t), Hψ0 +Hint} = −ψ̇0(x+X, t) +
φ′c(x)A

M0

+

A

M0(1 + ξ/M0)

[
ψ′(x, t)− ξφ′c(x)

M0

]
, (A.7)

{π(x, t), Hψ0 +Hint} =
(
1− Pφc

){ Aπ′(x, t)

M0(1 + ξ/M0)
− A(p+

∫
πψ′)

M0(1 + ξ/M0)2
φ′′c

+ψ′′0(x+X, t) − (∆U)′ + v(x+X, t)F10[Φ(x+X, t),Φx(x+X, t)]

+
d

dx

[
v(x+X, t)F10[Φ(x+X, t),Φx(x+X, t)]

]}
,(A.8)

where
A(X, t) =

∫
φ′c(x−X)ψ̇0(x, t) , (A.9)

(∆U)′ =
∂

∂Φ

(
∆U [Φ]

)∣∣∣∣∣
Φ=Φ(x+X,t)

, (A.10)

and primes and dots denote derivatives with respect to the first and second argu-
ments respectively (dots are not total time derivatives). Combining Eqs. (A1) to
(A8) we can write

Ẋ =
p+

∫
πψ′

M0(1 + ξ/M0)2
+

A(X, t)

M0(1 + ξ/M0)
, (A.11)

ṗ =
∂

∂X

∫
v(x, t)F [Φ,Φx]−

∫
π′(x−X, t)ψ̇0(x, t)

+
p+

∫
πψ′

M0(1 + ξ/M0)

∫
φ′′c (x−X)ψ̇0(x, t)

+
∫
φ′′c (x−X, t)ψ0(x

′, t) +
∫
ψ′′(x−X)ψ′0(x, t)

+
∫
U ′[Φ(x, t)]

(
φ′c(x−X) + ψ(x−X, t)′

)
, (A.12)

ψ̇(x, t) = π(x, t) +
p+

∫
πψ′

M0(1 + ξ/M0)2

[
ψ′(x, t)− ξφ′c

M0

]
− ψ̇0(x+X, t)

+
φ′c(x)A(X, t)

M0

+
A(X, t)

M0(1 + ξ/M0)

[
ψ′(x, t)− ξφ′c(x)

M0

]
, (A.13)
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π̇(x, t) =
(
1− Pφc

){ p+
∫
πψ′

M0(1 + ξ/M0)2

[
π′(x, t)− φ′′c (x)

p+
∫
πψ′

M0(1 + ξ/M0)

]
+ ψ′′(x, t)− V ′(ψ, φc) +

Aπ′(x, t)

M0(1 + ξ/M0)
− A(p+

∫
πψ′)

M2
0 (1 + ξ/M0)2

φ′′c

+ ψ′′0(x+X, t)− (∆U)′ + v(x+X, t)F10[Φ(x+X, t),Φx(x+X, t)]

− d

dx

[
v(x+X, t)F10[Φ(x+X, t),Φx(x+X, t)]

]}
. (A.14)

Next we derive a second-order equation for the kink center of mass variable
X(t). We begin by taking a total time derivative of Eq. (A11) which may be
written

Ẍ =
ṗ+

∫
π̇ψ′ +

∫
πψ̇′

M0(1 + ξ/M0)2
−

∫
φ′cψ̇

′

M0(1 + ξ/M0)
Ẋ − p+

∫
πψ′

M2
0 (1 + ξ/M0)2

∫
φ′cψ̇

′

+
1

M0(1 + ξ/M0)

d

dt
A . (A.15)

We consider each of the terms in Eq. (A.15) in turn, first treating the
∫
π̇ψ′ term.

Using Eq. (A.14) for π̇ and collecting terms we have∫
π̇ψ′ = Ẋ

∫
π′ψ′ +

Ẋξ

M0

∫
φ′′π − (p+

∫
ψ′π)2

M0(1 + ξ/M0)3

∫
φ′′cψ

′

−
∫ [
U ′(φc + ψ)− U ′(φc)

]
ψ′ +

ξ

M0

∫
φ′c[U

′(φc + ψ)− U ′(φ′c)]

− A(p+
∫
πψ′)

M2
0 (1 + ξ/M0)2

∫
φ′′cψ

′ +
∫
ψ′′0(x+X, t)ψ′ − ξ

M0

∫
ψ′′0(x+X, t)φ′c

−
∫

(∆U)′ψ′ +
ξ

M0

∫
(∆U)′φ′c +

ξ

M0

∫
ψ′φ′′

+
∫
v(x, t)ψ′(x−X, t)F10 −

∫
ψ′(x−X, t)

d

dx

(
v(x, t)F01

)
− ξ

M0

[∫
v(x, t)φ′c(x−X, t)F10 −

∫
φ′c(x−X, t)

d

dx

(
v(x, t)F01

)]
.(A.16)

Next we collect four of the terms in Eq. (A.16) together and write

−
∫ [
U ′(φc + ψ)− U ′(φc)

]
ψ′ +

ξ

M0

∫
φ′c[U

′(φc + ψ)− U ′(φc)]

−
∫

(∆U)′ψ′ +
ξ

M0

∫
(∆U)′φ′c =

(1 +
ξ

M0

)
∫
U ′[Φ(x+X, t)]φ′c +

∫
φ′′cψ

′ +
∫
U ′[Φ(x, t)] ψ′0(x+X, t) .

(A.17)
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This allows us to write∫
π̇ψ′ = Ẋ

∫
π′ψ′ +

Ẋξ

M0

∫
φ′′cπ −

(p+
∫
πψ′)2

M0(1 + ξ/M0)3

∫
φ′′cψ

′

+ (1 +
ξ

M0

)
∫
U ′[Φ(x, t)]φ′c(x−X) +

∫
φ′′cψ

′

−
∫
U ′[Φ(x+X, t)][φ′c(x, t) + ψ′(x, t)] +

ξ

M0

∫
ψ′φ′′c

− A(p+
∫
πψ′)

M2
0 (1 + ξ/M0)2

∫
φ′′cψ

′ +
∫
ψ′′0(x+X, t)ψ′ − ξ

M0

∫
ψ′′0(x+X, t)φ′c

+
∫
v(x, t)ψ′(x−X, t)F10 −

∫
ψ′(x−X, t)

d

dx

(
v(x, t)F01

)
−

[
ξ

M0

∫
v(x, t)φ′c(x−X, t)F10 −

∫
φ′c(x−X, t)

d

dx

(
v(x, t)F01

)]
.(A.18)

Next we we consider the
∫
πψ̇′ term for which we can write∫

πψ̇′ = Ẋ
∫
πψ′′ − ξẊ

M0

∫
πφ′′c −

∫
πψ̇0(x+X, t) +

A

M0

∫
πφ′′c . (A.19)

Combining Eqs. (A.18) and (A.19) and using Eq. (A.12) for ṗ we can write for
the numerator of the first term of Eq. (A.15),

ṗ+
∫
π̇ψ′ +

∫
πψ̇′ = −

(
1 +

ξ

M0

) ∫
v(x, t)

[
φ′c(x−X)F10 + φ′′c (x−X)F01

]
+

p+
∫
πψ′

M0(1 + ξ/M0)

∫
φ′′c (x−X)ψ̇0(x, t)

+ (1 +
ξ

M0

)

[
(1− Ẋ2)

∫
ψ′φ′′c

−
∫
ψ′′0(x, t)φ

′
c(x−X) +

∫
U ′[Φ(x, t)]φ′c(x−X)

]

+
A(X, t)(p+

∫
πψ′)

M2
0 (1 + ξ/M0)2

∫
φ′′cψ

′ +
A2(X, t)

M2
0 (1 + ξ/M0)

∫
φ′′cψ

′

+
A(X, t)

M0

∫
πφ′′c . (A.20)

Lastly, we compute
∫
φ′cψ̇

′ and dA/dt:∫
φ′cψ̇

′ =
∫
φ′cπ + Ẋ

∫
φ′cψ

′′ −
∫
φ′cψ̇

′
0(x+X, t) (A.21)

dA(X, t)

dt
=
∫
ψ̈0(x+X, t)φ′c(x) + Ẋ

∫
ψ̇′0(x+X, t)φ′c(x) . (A.22)
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Combining Eqs. (A.20-22) we finally have

Ẍ =
1

M0(1 + ξ/M0)

{
−
∫
v(x, t)

[
φ′c(x−X)F10[Φ(x, t),Φx(x, t)]

+φ′′c (x−X)F01[Φ(x, t),Φx(x, t)]
]

+
∫

(ψ̈0 − ψ′′0)φ
′
c(x−X) +

∫
U ′[Φ(x, t)]φ′c(x−X) + (1 + Ẋ2)

∫
ψ′φ′′c

−2Ẋ
∫
π′φ′c + 2Ẋ

∫
φ′c(x)ψ̇

′
0(x+X, t)

}
, (A.23)

where we have repeatedly made use of Eq. (A.11). One can use the ψ0 equation
to replace the ψ̈0 − ψ′′0 term if desired.

In the same manner we could derive an exact second-order equation for
ψ(x, t). However, it would be extremely long and would not give us as much
insight as the exact second-order equation for X(t). Rather, we will derive a
second-order differential equation for ψ(x, t) which is valid to first-order in the
perturbation strength. Taking the total time derivative of ψ̇ given in Eq. (A.13)
we have, keeping only terms of first-order in the perturbation,

ψ̈(x, t) = π̇(x, t)− ψ̈0(x+X, t) +
φ′c(x)

M0

dA(X, t)

dt
. (A.24)

Using expressions for π̇ and dA/dt given by Eqs. (A.14) and (A.22) we have, again
keeping only first-order terms in λ,

ψ̈(x, t) = ψ′′(x, t)− V ′(ψ, φc)−
φ′c(x)

M0

[∫
ψφ′′c +

∫
V ′(ψ, φc)φc

]
+ (1− Pφc)

{
ψ′′0(x+X, t)− (∆U)′ + v(x+X, t)F10[Φ(x+X, t),Φx(x+X, t)]

− d

dx

(
v(x+X, t)F01[Φ(x+X, t),Φx(x+X, t)]

)
− ψ̈0(x+X, t)

}
. (A.25)

Next we use the facts that

V ′(ψ, φc) = ψ(x, t)U ′′(φc(x)) +O(λ2) , (A.26)

(∆U)′ = ψ0(x+X, t)U ′′(φc) +O(λ2) , (A.27)

and ∫
ψ′
(
φ′′c + V ′(ψ, φc)

)
= O(λ2) (A.28)
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to write

ψ̈(x, t)− ψ′′(x, t) + ψ(x, t)U ′′(φc) =

(1− Pφc)
{
−ψ̈0(x+X, t) + ψ′′0(x+X, t)− ψ0(x+X, t)U ′′(φc)

+v(x+X, t)F10[Φ(x+X, t),Φx(x+X, t)]

− d

dx

(
v(x+X, t)F01[Φ(x+X, t),Φx(x+X, t)]

)}
. (A.29)

Finally we use the fact that ψ0 satisifies Eq. (3.3.8) to obtain

ψ̈(x, t)− ψ′′(x, t) + ψ(x, t)U ′′(φc) =

(1− Pφc)
{[

1− U ′′(φc)
]
ψ0(x+X, t) + v(x+X, t)

[
F10[φc, φ

′
c]− F10[0, 0]

]
− d

dx

[
v(x+X, t)

(
F01[φc, φ

′
c]− F01[0, 0]

)]}
. (A.30)



Appendix B

Equations of Motion via Direct
Substitution

In this appendix, we derive the equations of motion by simply substituting the kink
variables for the original field variables in the equation of motion for the original
fields. The Euler-Lagrange equation of motion for the original field Φ(x, t) can be
derived from the Lagrangian density

L =
1

2
Φ2
t −

1

2
Φ2
x − U(Φ) + v(x, t)F [Φ(x, t),Φx(x, t)] . (B.1)

We add to this equation of motion a phenomenological damping term of the form
εΦ̇(x, t) (when appropriate) thereby obtaining

Φtt + εΦt(x, t)− Φxx + U ′(Φ) + G = 0 . (B.2)

where G is given by

G =
d

dx

[
v(x, t)F01[Φ(x, t),Φx(x, t)]

]
− v(x, t)F10[Φ(x, t),Φx(x, t)] . (B.3)

Using as an ansatz for Φ

Φ(x, t) = φc[x−X(t)] + ψ[x−X(t), t] + ψ0(x, t) , (B.4)

we may compute the appropriate derivatives that occur in Eq. (B.2);

d

dt
Φ(x, t) = −Ẋφ′c[x−X(t)]− Ẋψ′[x−X(t), t] + ψ̇[x−X(t), t]

+ ψ̇0(x, t) , (B.5)

d2

dt2
Φ(x, t) = −Ẍ

{
φ′c[x−X(t)] + ψ′[x−X(t), t]

}
+ Ẋ2

{
φ′′c [x−X(t)]
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+ ψ′′[x−X(t), t]
}
− 2Ẋψ̇′[x−X(t), t]

+ ψ̈[x−X(t), t] + ψ̈0(x, t) , (B.6)

d2

dx2
Φ(x, t) = φ′′c [x−X(t)] + ψ′′[x−X(t), t] + ψ′′0(x, t) , (B.7)

where as before, primes and dots represent partial derivatives with respect to the
first and second arguments respectively (a dot does not represent a total time
derivative). To obtain an equation of motion for the center of mass coordinate
X(t), we substitute the expressions in Eqs. (B.5-7) into Eq. (B.2) , multiply by
φ′c[x−X(t)] and integrate over x. Using Eqs. (3.3.6-7) we have

[M0 + ξ]Ẍ = Ẋ2
∫
ψ′′φ′c − 2Ẋ

∫
ψ̇′φ′c +

∫
[ψ̈0(x, t)− ψ′′0(x, t)]φ

′
c(x−X)

−
∫
ψ′′φ′c +

∫
U ′[Φ]φ′c(x−X)− εẊ[M0 + ξ]

+ε
∫
φ′c(x−X)ψ̇0(x, t) +

∫
φ′c(x−X)G , (B.8)

where we have also used the fact that∫
ψ̈φ′c =

∫
ψ̇φ′c = 0 . (B.9)

To put Eq. (B.8) into a form more easily compared with Eq. (A.23), we use Eq.
(A.13) to substitute for ψ̇, which after collecting like terms gives us

Ẍ =
1

M0(1 + ξ/M0)

{
−
∫
φ′c(x−X)G +

∫
(ψ̈0 − ψ′′0)φ

′
c(x−X)

+
∫
U ′[Φ(x, t)]φ′c(x−X) + (1 + Ẋ2)

∫
ψ′φ′′c

−2Ẋ
∫
π′φ′c + 2Ẋ

∫
φ′c(x)ψ̇

′
0(x+X, t)

+ε
∫
φ′c(x−X)ψ̇0(x, t)

}
− εẊ , (B.10)

which agrees with Eq (A.23) for ε = 0.
Similarly we can derive the ψ equation. To do this we merely write the full

field equation in terms of the new variables which after rearrangement yields

ψ̈[x−X(t), t]− ψ′′[x−X(t), t] + U ′[Φ(x, t)] =

Ẍ
{
φ′c[x−X(t)] + ψ′[x−X(t)]

}
− Ẋ2

{
φ′′c [x−X(t)] + ψ′′[x+X(t), t]

}
+ 2Ẋψ̇′[x−X(t), t]− ψ̈0(x, t) + φ′′c [x−X(t)] + ψ′′0(x, t)− G

− ε

[
Ẋ
(
φ′c(x−X) + ψ′(x−X, t) + ψ̇(xX , t) + ψ0(xX , t)

)]
. (B.11)
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Before we carry out a perturbation expansion of Eq. (B.10) we transform to a frame
which moves with the kink. Since we don’t know X(t) exactly, we can transform
to a frame [y = x −X(1)(t)] whose origin moves according to the first-order kink
motion. In this frame, the kink velocity is of second-order in the perturbation
and therefore we can neglect all terms in Eq. (B.11) which are proportional to Ẋ
leaving us with

ψ̈[y, t] − ψ′′[y, t] + U ′[φc(y, t)] +
(
ψ(y, t) + ψ0[y +X(1)(t)]

)
U ′′[φc(y)] =

−
{
φ′c(y)

M0

∫
φ′c[y −X(1)(t)]G

∫
(ψ̈0 − ψ′′0)φ

′
c[y −X(1)(t)]

}
− ψ̈0(y, t) + φ′′c [y −X(1)(t)] + ψ′′0(y, t) + G

− ε

[
Ẋ
(
φ′c(x−X) + ψ′(x−X, t) + ψ̇(xX , t) + ψ0(xX , t)

)]

+ ε
φ′c(y)

M0

∫
φ′c(x− x)ψ̇0(x, t) . (B.12)

Cancelling common terms and using the projection operator notation we have

ψ̈[y, t] − ψ′′[y, t] + ψ(y, t)U ′′[φc(y)]

=
(
1− Pφc)

{
−G − ψ̈0 + ψ′′0 − ψ0[y +X(1)(t)]U ′′[φc(x)]

− εψ̇ + ψ̇0(y +X(1))

}
. (B.13)

Finally using Eq. (3.3.8) to first-order in the perturbation strength, we have

ψ̈[y, t]− ψ′′[y, t] + ψ(y, t)U ′′[φc(y)] =(
1− Pφc)

{
ψ0[y +X(1)(t)]U ′′[φc(x)]

+ v[y +X(1)(t)]
(
F10[φc(y)], φ

′
c(y)]− F10[0, 0]

)
− v′[y +X(1)(t)]

(
F01[φc(y)], φ

′
c(y)]− F01[0, 0]

)
− v[y +X(1)(t)]

(
φ′c(y)F11[φc(y)], φ

′
c(y)]− φ′′c (y)F02[φc(y)], φ

′
c(y)]

)
− εψ̇ + ψ̇0(y +X(1))

}
, (B.14)

which is equivalent to what is given in Eq. (A.30).



Appendix C

Evaluation of the integral J(β2)

The integral J(β2) [ Eq. (4.1.50)] differs from Hardy’s integral for Lommel func-
tions [91, 92] only in that in the denominator, t2 + 1 is replaced by t2 + β2. The
only restriction placed on β is that <(β) > 0. We first consider the case in which
b < 0 for which we have from the tables [153],

J(β2) =
1

π

∞∫
0

t dt

t2 + β2
sin
[
at+

b

t

]
=

1

2
e
−(aβ−− b

β−
)
, (C.1)

where the restriction <(b) > 0 is required.
For b > 0 we distinguish between b < a and b > a. The latter may be

reduced to the b < a case by using the relation [154],

1

π

∞∫
0

t dt

t2 + β2
sin
[
at+

b

t

]
= J0(2

√
ab)− 1

π

∞∫
0

t dt

t2 + 1
β2

sin
[a
t

+ bt
]
. (C.2)

Therefore we need only consider b < a. Without loss of generality we may confine
our attention to |β| = 1 by writing β = |β|eiϕ which allows us to write

J(β2) =
1

π

∞∫
0

t dt

|β|2[ t2|β|2 + e2iϕ]
sin
[
at+

b

t

]
, (C.3)

=
1

π

∞∫
0

t dt

t2 + e2iϕ
sin
[
a′t+

b′

t

]
, (C.4)

where a′ and b′ are a and b scaled by 1/|β|. Therefore, with b < a and |β| = 1, we
define

x ≡ 2
√
ab , c ≡ 1

β

√
a

b
, (C.5)
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in terms of which we may write J(β2) as

J(β2) =
1

π

∞∫
0

t dt

t2 + β2
sin
[x
2

(
t

√
a

b
+

1

t

√
b

a

)]
, (C.6)

=
c

π

∞∫
−∞

eudu

ceu + 1
ceu

sin[x cosh(u)] , (C.7)

=
c

π

∞∫
0

du

{
e−u

ce−u + (ce−u)−1
+

eu

ceu + (ceu)−1

}
sin[x cosh(u)] , (C.8)

=
1

2π

∞∫
1

dτ√
τ 2 − 1

c2 − 1 + 2τ 2

θ2 + τ 2
sin(xτ) , (C.9)

with

θ ≡1

2
(c− 1

c
) =

c′2 + 1

2c′

{c′2 − 1

c′2 + 1
<(β)− i=(β)

}
, (C.10)

c′ ≡
√
b

a
. (C.11)

Since <(b) > 0 and c′ < 1, θ is never pure imaginary, therefore θ2 does not lie
on the negative real axis and the only poles of the integrand in Eq. (C.9) are at
τ = ±1. We evaluate Eq. (C.9) by considering the contour integral Γ(β2) given by

Γ(β2) ≡
∫
Γ

dz eixz√
z2 − 1

c2 − 1 + 2z2

θ2 + z2
. (C.12)

With the branch cuts chosen as in Figure C.1, Γ(β2) becomes

Γ(β2) =2i

∞∫
1

dτ sin(xτ)√
τ 2 − 1

c2 − 1 + 2τ 2

θ2 + τ 2
− 2i

1∫
−1

dτ e(ixτ)√
1− τ 2

c2 − 1 + 2τ 2

θ2 + τ 2
, (C.13)

therefore we have for J(β2),

J(β2
−) =

1

2πi

Γ(β2)

2
+

1

2π

1∫
0

dτ cos(xτ)√
1− τ 2

c2 − 1 + 2τ 2

θ2 + z2
, (C.14)

=
Res[f(z);−iθ]

2
+

1

2π

π
2∫

0

dϕ cos[x cos(ϕ)]
c2 − 1 + 2 cos2(ϕ)

θ2 + cos2(ϕ)
,(C.15)

where Res[f(z);−iθ] is the residue of f(z) evaluated at −iθ with f(z) given by
the integrand of Eq. (C.12). In writing Eq. (C.14) we have used the fact the
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Figure C.1: Contour for the integral Γ(β2)

contributions to Γ(β2) from the large and small semicircles vanish when R → ∞
and δ → 0 respectively. Evaluating the residue at the simple pole −iθ we have

Res[f(z);−iθ] = e−(aβ− b
β

) . (C.16)

The remaining integral in Eq. (C.15) may be evaluated by noting that

c2 − 1 + 2 cos2(ϕ)

θ2 + cos2(ϕ)
= −4

∞∑
k=1

(ic)2kcos(2kϕ) . (C.17)

Since c < 1, the sum in Eq. (C.17) is uniformly convergent and we may insert it
into Eq. (C.15) and integrate term by term. We also make the substitution

cos[x cos(ϕ)] = J0(x) + 2
∞∑
n=1

(−1)nJ2n(x)cos(2nϕ) , (C.18)

The double sum resulting from substitution of Eqs. (C.17) and (C.18) into (C.15)
is reduced to a single sum by orthogonality of cos(2nϕ) on [0, π

2
] , leaving us with

1

2π

∞∫
0

dτ cos(xτ)√
1− τ 2

c2 − 1 + 2τ 2

θ2 + z2
= −

∞∑
k=1

c2kJ2k(x) , (C.19)

= −Λ2

[2b
β
, 2
√
ab
]
. (C.20)
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Finally collecting Eqs. (C.1), (C.16) and (C.20) we have

J(β2) =
1

2
e−(aβ− b

β
) − θ(b)Λ2

[2b
β
,
√

2ab
]
, (C.21)

where θ(b) is the Heaviside step function.



Appendix D

Lommel Functions of Two
Variables

In Chapter 4 we obtained analytic expressions for several Green functions in terms
of “modified” Lommel functions of two variables (not to be confused with Lommel
functions of one variable sµ,ν(z) or Sµ,ν(z)). Since these functions are somewhat
obscure, we shall review some of the existing literature which illustrates properties
of Lommel functions and numerical techniques which have been applied to evaluate
the functions. We end this appendix with the derivation of some properties of the
modified functions which were useful in the derivation of the Green functions in
Chapter 4.

Lommel functions were first studied by Lommel in his studies of diffraction
at a straight edge [155] and a circular aperature [156]. In these works, Lommel
gives a detailed discussion of what have become known as Lommel functions of
two variables Un(w, s) and Vn(w, s), which are defined by the series

Un(w, s) =
∞∑
m=0

(−1)m
(w
s

)2m+nJ2m+n(s) , (D.1)

Vn(w, s) =
∞∑
m=0

(−1)m
(w
s

)−(2m+n)J−(2m+n)(s) . (D.2)

Among the properties examined are recurrence relations, integral expressions and
values for special arguments. He also gives some short tables and plots for real
values of w and s. Many of these results are reproduced in Appendix II of Walker’s
The Analytical Theory of Light [157] as well as in Watson [91]. Lommel functions
continue to be of use in the study of the propagation of electromagnetic radiation
in a variety of media [158, 159, 160, 161].

Although Lommel functions of two variables have not received a great deal
of attention since Lommel’s original publications, several new properties and/or
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relations have been discovered. In particular, Shastri [162] presents some integral
transforms related to the Laplace transform of the Lommel functions along with
integrals of Lommel functions multiplied by Bessel functions, Fresnel functions,
sines and cosines (these are not Fourier transforms due to the scaled arguments
used) and other Lommel functions. Dekanosidze [163] shows that the functions
Un(ξ, η) are solutions of the hyperbolic equation

∂2U

∂ξ∂η
+ U = 0 , (D.3)

with ξ = s2/2w and η = w/2. In addition, he derives about 15 complicated
relations between the functions, one of the simpler being

Uν(w, s) = Uν(s
2/w, s) +

1

2

w∫
s2/w

dx Jν−1(x)J0

[√(
x− s2/w

)
(x− w)

]
. (D.4)

Several of these relations may prove useful when the functions are actually evalu-
ated numerically.

The first numerical evaluation of the functions was carried out by Lommel
himself in 1886. A more comprehensive table was published by Dekanosidze [164] in
1956, again for only real values of w and s. Additional studies for real values have
been carried out by Rayleigh [165], Hopkins [166], Conrady [167], Buxton [168],
Boersma [169] and Rybner [170]. The functions of purely imaginary argument,
denoted by

Yn(w, s) ≡ i−nUn(iw, is) =
∞∑
m=0

(w
s

)2m+nI2m+n(s) , (D.5)

Θn(w, s) ≡ i−nVn(iw, is) =
∞∑
m=0

(w
s

)−(2m+n)I−(2m+n)(s) , (D.6)

have been tabulated by Kuznetsov [171] and Bark and Kuznetsov [172]. To our
knowledge, no one has studied the “modified” functions which we define to be

Λn(w, s) ≡ i−nUn(iw, s) =
∞∑
m=0

(w
s

)2m+n
J2m+n(s) , (D.7)

Ξn(w, s) ≡ i−nVn(iw, s) =
∞∑
m=0

(w
s

)−2m−n
J−2m−n(s) . (D.8)

The numerical evaluation of the modified functions is presented in Appendix E
along with a new asymptotic expansion. The treatment in Appendix E applies
to complex values of w so the formula therein may be used to calculate Lommel
functions of two real variables.
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Now we turn our attention to deriving a few properties of the Lommel
functions for the special case in which the arguments are of the form

w = β(τ − |z|) ,
s =

√
τ 2 − z2 , (D.9)

with β a complex constant independent of τ and z. We restrict ourselves to
the Un(w, s) Lommel functions although similar relations exist for the Vn(w, s)
functions and may be found in the literature [91, 162, 163]. Using the recurrence
relation for Bessel functions [173], and the defining series of Lommel functions,

Un(w, s) =
∞∑
m=0

(−1)2m+nJ2m+n(s) , (D.10)

one may derive the following:

Un(w, s) =
(w
s

)n
Jn(s)− Un+2(w, s) , (D.11)

∂Un(w, s)

∂s
= − s

w
Un+1(w, s) , (D.12)

∂Un(w, s)

∂w
=

1

2
Un−1(w, s) +

1

2

( s
w

)2
Un+1(w, s) . (D.13)

For the variables (w, s) as defined in Eq. (D.9) we have

∂Un(βw, s)

∂|z|
= −1

2

[
βUn−1(βw, s) +

1

β
Un+1(βw, s)

]
, (D.14)

∂Un(βw, s)

∂τ
= −1

2

[
βUn−1(βw, s)−

1

β
Un+1(βw, s)

]
, (D.15)

∂2Un(βw, s)

∂2|z|2
=

1

4

[
β2Un−2(βw, s) + 2Un(βw, s) +

1

β2
Un+2(βw, s)

]
, (D.16)

∂2Un(βw, s)

∂2τ 2
=

1

4

[
β2Un−2(βw, s)− 2Un(βw, s) +

1

β2
Un+2(βw, s)

]
, (D.17)

Subtracting Eq. (D.16) from Eq. (D.17) we have

∂2Un(βw, s)

∂2τ 2
− ∂2Un(βw, s)

∂2|z|2
= −Un(βw, s) . (D.18)

Therefore Un(βw, s) is a solution of the “massive” Klein-Gordon equation (at least
in the positive half-space since |z| > 0).

The above properties hold for arbitrary complex w and s. We now focus on
the modified functions in which w is pure imaginary. Introducing the notation

Λn(w, s) =i−nUn(iw, s) , (D.19)
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with w and s given by Eq. (D.9), we consider the limit in which z → 0 for which

w

s
=

√√√√τ − |z|
τ + |z|

→ 1 . (D.20)

For n even we have

Λ2n(τ, τ) = −
n−1∑
m=1

J2m(τ) +
1− J0(τ)

2
. (D.21)

For odd n we use an integral representation

Λ2n+1(τ, τ) = −
n−1∑
m=0

J2m+1(τ) +
1

2

∞∫
0

dxJ0(x) , (D.22)

or in terms of Struve functions [174],

Λ2n+1(τ, τ) =−
n−1∑
m=0

J2m+1(τ)+
1

2

{
τJ0(τ)+

πτ

2
[J1(τ)H0(τ)−J0(τ)H1(τ)]

}
. (D.23)

Finally we consider the limiting case of τ = |z| , i.e. s = w = 0. Since for all
n ≥ 1 Jn(0) = 0 , we have

Λ0(0, 0) = 1 ,

Λn(0, 0) = 0 n ≥ 1 . (D.24)

While some of the properties (especially D.18) derived above are useful for the
actual derivation of the Green functions in Chapter 4, they are most useful when
checking the analytic expressions by operating on them with the differential oper-
ator

∂tt − ∂xx + U ′′[φc(x)] . (D.25)



Appendix E

Numerical Evaluation and
Asymptotic Forms of Modified
Lommel Functions of Two
Variables

Numerical evaluation of the Green functions derived in Chapter 4 requires an
evaluation of the modified Lommel functions. Although Lommel functions of two
real variables [164] and two purely imaginary variables [172] have been studied, to
our knowledge no one has yet considered the modified functions. Below we present
methods which are valid for w complex and s real (since we start by considering
the modified functions and w may be complex, our methods also include the case
of two real variables). Representing the first argument as βw, where |β| = 1 and
w and s are real, we have for the defining series

Λn (βw, s) =
∞∑
m=0

(
βw

s

)2m+n

J2m+n (s) , (E.1)

from which we deduce the symmetries

Λn(−βw, s) = (−1)nΛn(βw, s) ,

Λn(βw,−s) = Λn(βw, s) . (E.2)

From Eqs. (E.2) we see that we need only investigate the first quadrant of the w–s
plane. Another relationship exists which allows us to further restrict our attention
to the angular region (0, π/4), i.e. the first octant. We obtain this property by
recalling the generating function for Bessel functions [175]:

e
s
2
[βκ− 1

βκ
] =

∞∑
m=−∞

(βκ)mJm(s) , (E.3)
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where κ ≡ w/s. Using the symmetry of the Bessel functions about the origin we
have,

sinh
[s
2

(
βκ− 1

βκ

)]
=

∞∑
m=−∞

(βκ)2mJ2m(s) ,

cosh
[s
2

(
βκ− 1

βκ

)]
=

∞∑
m=−∞

(βκ)2m+1J2m+1(s) . (E.4)

Next we note that

Λn

( s2

βw
, s
)

=
∞∑
m=0

(
s

βw
)2m+nJ2m+n(s) , (E.5)

which leads us to

sinh
[s
2

(
βκ− 1

βκ

)]
= Λ1(βw, s)− Λ1

( s2

βw
, s
)
,

cosh
[s
2

(
βκ− 1

βκ

)]
= J0(s) + Λ0(βw, s) + Λ0

( s2

βw
, s
)
. (E.6)

From Eqs. (E.6) we see that we have a relationship which allows us to consider only
the region of the first quadrant of the s–w plane in which w/s < 1, namely the first
octant. In this region the series definition (E.1) converges uniformly, however that
rate of convergence is very slow when one approaches w/s = 1. By comparison
with the geometric series we see that since Jn (s) < 1 ∀ n , we have as an error
estimate for truncation after N terms

RN <
κ2N

1− κ2
, (E.7)

We note that the error estimate in Eq. (E.7) is very crude as it does not take
into account the decaying nature of the Bessel functions, however it suffices for our
calculations.

As w/s → 1, the number of terms in the series needed to attain a given
accuracy becomes unreasonably large. For values of κ = w/s larger than some κ0,
we turn to an asymptotic expansion [176] of the modified Lommel functions. We
begin by following Mayall’s [177] procedure for obtaining an integral representation
for the Lommel functions by substitution of an integral representation for the Bessel
functions into the series and summing the series explicitly. We restrict ourselves
to deriving expressions for Λ0 and Λ1. For small n the asymptotic expansion for
Λn may be obtained from the recurrence relation for Lommel functions. The large
n limit has not yet been examined.
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Starting with the integral representation for Bessel functions

J2m (s) =
(−1)m

π

π∫
0

dθeis cos(θ)cos (2mθ) , (E.8)

we have

Λ0(βw, s) =
∞∑
m=0

(βκ)2m(−1)m
1

π

π∫
0

dθeis cos(θ)cos(2mθ) , (E.9)

=
1

π

π∫
0

dθ
1 + (βκ)2 cos(2θ)

1 + 2(βκ)2 cos(2θ) + (βκ)4
eis cos(θ) , (E.10)

=
J0(s)

2
+

1− (βκ)4

2π

π∫
0

dθ
eis cos(θ)

1 + 2(βκ)2 cos(2θ) + (βκ)4
, (E.11)

=
J0(s)

2
+ σ1(β, κ)

ε(β, κ)

π

π∫
0

dθ
eis cos(θ)

ε2(β, κ) + cos2(θ)
, (E.12)

where

ε(β, κ) ≡ 1− (βκ)2

2βκ
,

σ1(β, κ) ≡ 1 + (βκ)2

4βκ
, (E.13)

and uniform convergence of the sum has been used. Similarly we may write

Λ1(βw, s) = −σ2(β, κ)
d

ds

ε(β, κ)

π

π∫
0

dθ
eis cos(θ)

ε2(β, κ) + cos2(θ)
, (E.14)

with

σ2(β, κ) ≡
1 + (βκ)2

4
+
βκ[1 + ε2(β, κ)]

2ε(β, κ)
. (E.15)

At this point, Mayall’s method no longer applies (unless β = ±i) and we turn to
an alternate derivation.

The integral I(ε, s) given by

I(ε, s) =
ε

π

π∫
0

dθ
eis cos(θ)

ε2 + cos2(θ)
, (E.16)

which occurs in Eqs. (E.12) and (E.14), is strong function of ε since in the limit
as ε→ 0 (w/s→ 1), we obtain a delta function. Other major contributions occur
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Figure E.1: Contour for the asymptotic values of the Lommel functions.

at the stationary points θ = 0, π. To evaluate I(ε, s), we substitute t = cos(θ),
deform the contour and represent the integrals as a residue which captures the
strong ε behavior, plus two integrals for which asymptotic expansions are easily
derived. Substituting we have

I(ε, s) =
ε

π

1∫
−1

dθ
eist

(ε2 + t2)
√

1− t2
, (E.17)

=
ε

π

{
2πiRes[f(z), iε]−

∫
c1
dz

eisz

(ε2 + z2)
√

1− z2

−
∫
c3
dz

eisz

(ε2 + z2)
√

1− z2

}
, (E.18)

where f(z) is given by

f(z) =
ε

π

eisz

(ε2 + z2)
√

1− z2
, (E.19)

and the contours are shown in Figure E.1. We have used the fact that as δ → 0
and y0 →∞, the contributions from the contours cδ1, cδ2 and c2 vanish by Jordan’s
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lemma. Evaluating the residue and shifting the variables, we have

I(ε, s) =
e−εs√
1 + ε2

−
∫ i∞

0
dz

eiszeis

[ε2 + (z + 1)2]
√

1− (z + 1)2

−
∫ 0

i∞
dz

eisze−is

[ε2 + (z − 1)2)]
√

1− (z − 1)2
, (E.20)

=
e−εs√
1 + ε2

− ε

π
[J + J∗] , (E.21)

where

J ≡ ieis
∞∫
0

dy
e−sy

[ε2 + (iy + 1)2]
√

1− (iy + 1)2
, (E.22)

= 2ieis
∞∫
0

dx
e−sx

2

[ε2 + (ix2 + 1)2)
√
x2 − 2i

, (E.23)

As written in Eq. (E.23), J is in one of Dingle’s [178] standard integral forms
which has as an asymptotic expansion

J ≈ 2ieis
√

π

2F01

e−F0

∞∑
n=0

Qr , (E.24)

where

Q0 = G0 ,

Q1 =
−
√

2

3
√
πF

3
2

2

[−3G1F2] ,

Q2 =
1

24F 3
2

[12G2F
2
2 ] ,

Q3 =
−
√

2

135
√
πF

9
2

2

[−45G4F
4
2 ] ,

Q4 =
1

1152F 6
2

[144G4F
4
2 ] , (E.25)

Fν =

(
d

dx

)ν
sx2 , (E.26)

Gν =

(
d

dx

)ν
1

[ε2 + (ix2 + 1)2]
√
x2 − 2i

. (E.27)
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Carrying out the derivatives, we have, including up to Q4

J + J∗ = − 2

1 + ε2

√
2

πs

{
cos(s− π

4
)
[1
2

+
R4(β, κ)

(8s)2

]
+sin(s− π

4
)
[R2(β, κ)

(8s)

]}
+O(s−

7
2 ) , (E.28)

where

R2(β, κ) =
9 + ε2(β, κ)

2[1 + ε2(β, κ)]
, (E.29)

R4(β, κ) = −9

4
+

12

1 + ε2(β, κ)
− 96

(1 + ε2(β, κ))2
. (E.30)

With Eq. (E.28) we now have an asymptotic expansion for I(ε, s), which leads to
the following expressions for Λ0(βw, s) and Λ1(βw, s) :

Λ0(βw, s) ≈ J0(s)

2
+ σ1(β, κ)

e−ε(β,κ)s√
1 + ε2(β, κ)

+ σ1(β, κ)

√
2

πs

ε(β, κ)

1 + ε2(β, κ)

{
cos(s− π

4
)
[
1 +

2R4(β, κ)

(8s)2

]
+ sin(s− π

4
)
[2R2(1, κ)

8s

]}
+

σ1(β, κ)√
1 + ε2(β, κ)

O(s−
7
2 ), (E.31)

Λ1(βw, s) ≈ ε(β, κ)σ2(β, κ)√
1 + ε2(β, κ)

{
e−ε(β,κ)s − 1√

1 + ε2(β, κ)

√
2

πs
×

×
[
cos(s− π

4
)
(2[R2(β, κ)− 2]

8s
− 40

R4(β, κ)

(8s)3

)
− sin(s− π

4
)
(
1 +

2[R4(β, κ) + 12R2(β, κ)]

(8s)2

)]}

+
ε(β, κ)σ2(β, κ)

1 + ε2(β, κ)
O(s−

9
2 ) , (E.32)



Appendix F

Thermal Averages and
Correlation Functions

In Chapter 6 we require the thermal average of several functions of the normal
mode amplitudes bk. In general the bk’s are complex and we use for convenience
the following definition for the averages

〈F (bq, b
∗
q′)〉 =

∏
k

∞∫
−∞

dbk
∞∫
−∞

db∗k F (bq, b
∗
q′)e

−βωk|bk|2

∏
k

∞∫
−∞

dbk
∞∫
−∞

db∗k e
−βωk|bk|2

(F.1)

From this definition it is clear that 〈bk〉 = 〈b∗k〉 = 0. However, to see that quantities
such as 〈b2k〉 = 〈bk∗2〉 = 0 it is useful to write the average in terms of the real and
imaginary parts, for example

〈b2k〉 = 〈bRk
2
+ 2bRk b

I
k − bIk

2〉 . (F.2)

The average in terms of the real and imaginary parts becomes

〈F (bq, b
∗
q′)〉 =

∏
k

∞∫
−∞

dbRk
∞∫
−∞

dbIk F (bq, bq′)e
−βωk(bRk

2
+bIk

2
)

∏
k

∞∫
−∞

dbRk
∞∫
−∞

dbIk e
−βωk(bRk

2
+bI

k
2
)

, (F.3)

from which we can see that the cross term in Eq. (F.2) is zero and the quadratic
terms are equal.

In general the complex notation is easier to handle which may be illustrated
by the ease with which 〈bqb∗q〉 is computed:

〈bqb∗q〉 =

∏
k

∞∫
−∞

dbk
∞∫
−∞

db∗k|bq|2e−βωk|bk|
2

∏
k

∞∫
−∞

dbk
∞∫
−∞

db∗ke
−βωk|bk|2

, (F.4)
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=

∞∫
0
|bq|2e−βωq |bq |

2
d|bq|2

∞∫
0
e−βωq |bq |2d|bq|2

, (F.5)

=
T

ωq
, (F.6)

where we have made a transformation to polar coordinates and taken kB to be
1. With these averages computed we can compute some of the more complicated
averages and correlations. The first of these is the average of ψ2 which is

〈ψ2(x, t)〉 =

〈∑
k1,k2

[
bk1fk1(x)e

−iωk1 t + b∗k1f
∗
k1

(x)eiωk1 t
]
×

×
[
bk2fk2(x)e

−iωk2 t + b∗k2f
∗
k2

(x)eiωk2 t
]〉

, (F.7)

=
∑
k

〈bkb∗k〉|fk(x)|2

ωk
, (F.8)

= T
∑
k

|fk(x)|2

ω2
k

. (F.9)

The sum in Eq. (F.9) is exactly the static Green function. Using the sine-Gordon
static Green function [115] we can write

〈ψ2(x, t)〉 =
T

2

(
1− 1

2
sech2x

)
. (F.10)

Next we use the fact that the functions fk(x) have the following symmetry

fk(−x) = ±f−k(x) , (F.11)

which tells us that
〈ψ2(−x, t)〉 = 〈ψ2(x, t)〉 . (F.12)

Next using the fact that U ′′′[φc(−x)] = −U ′′′[φc(x)] and φ′c(−x) = φ′c(x) we have
[recall Eq. (6.1.3) for Fψ]

〈Fψ〉 =
1

2M0

∞∫
−∞

U ′′′[φc(x)]φ
′
c(x)〈ψ2(x, t)〉 = 0 . (F.13)

Also since ηψ [see Eq. (6.1.2)] is linear in ψ we have

〈ηψ〉 = 0 . (F.14)
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Now we go on to compute the correlation functions 〈ηψ(t) ηψ(t′)〉 and
〈Fψ(t) Fψ(t′)〉 . First we consider the η correlation function which we write as

〈ηψ(t) ηψ(t′)〉 =
4

M2
0

∞∫
−∞

dx

∞∫
−∞

dx′φ′′c (x)φ
′′
c (x

′)×

×
∑
k

[
ωk
2
〈bkb∗k〉fk(x)f ∗k (x′)e−iωk(t−t

′) +H.C.

]
(F.15)

=
2T

M2
0

∞∫
−∞

dx

∞∫
−∞

dx′φ′′c (x)φ
′′
c (x

′)×

×
∑
k

[
fk(x)f

∗
k (x

′)e−iωk(t−t
′) +H.C.

]
(F.16)

=
4T

M2
0

∑
k

∣∣∣ ∫ dxφ′′c (x)fk(x)
∣∣∣2 cos[ωk(t− t′)] . (F.17)

For t− t′ > 1/ωk0 this correlation function decays rapidly where ωk0 is the lowest
frequency and H.C. means Hermitian conjugate.

The last correlation function computed is 〈Fψ(t) Fψ(t′)〉 where Fψ(t) in
terms of normal mode amplitudes is given by

Fψ =
1

2M0

∫
dxU ′′′[φc(x)]φ

′
c(x)

∑
k1,k2

1√
4ωk1ωk2

{
bk1bk2fk1(x)fk2(x)e

−i(ωk1+ωk2 )t

+ bk1b
∗
k2
fk1(x)f

∗
k2

(x)e−i(ωk1−ωk2 )t + H.C.

}
. (F.18)

In doing the average only those terms which have two bk’s and b∗k’s are nonzero;
therefore we write

〈Fψ(t) Fψ(t′)〉 =
1

2M0

∫
dxU ′′′[φc(x)]φ

′
c(x)

∫
dx′U ′′′[φc(x

′)]φ′c(x
′)
[
A+B +H.C.

]
,

(F.19)
with A and B given by

A =
∑

k1,k2,k3,k4

〈bk1bk2b∗k3b
∗
k4
〉

√
ωk1ωk2ωk3ωk4

fk1(x)fk2(x)f
∗
k3

(x′)f ∗k4(x
′)e−i(ωk1+ωk2 )t+i(ωk3+ωk4 )t′ ,

(F.20)

B =
∑

k1,k2,k3,k4

〈bk1b∗k2bk3b
∗
k4
〉

√
ωk1ωk2ωk3ωk4

fk1(x)f
∗
k2

(x)fk3(x
′)f ∗k4(x

′)e−i(ωk1−ωk2 )t−i(ωk3−ωk4 )t′ .

(F.21)
First we consider the A term. The averages of the four b factors is zero unless
k1 = k3, k2 = k4 or k1 = k4, k2 = k3, both of which are the same due to relabeling
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and therefore we restrict ourselves to the former. First we consider k1 = k3, k2 = k4

but k1 6= k4 in which the average over the bki factors yields

〈|bk1|2|bk3|2〉 =
T

ωk1

T

ωk2
. (F.22)

Therefore this contribution to A can be written as

2
∑
k1,k2

T 2

ω2
k1
ω2
k2

fk1(x)f
∗
k1

(x′)fk2(x)f
∗
k2

(x′)e−i(ωk1+ωk2 )(t−t′) , (F.23)

where the factor of 2 is due to the k1 = k4, k2 = k3 term. In the case that
k1 = k2 = k3 = k4 we must evaluate

〈|bk|4〉 =

∞∫
0
|bk|4e−βωk|bk|

2
d|bk|2

∞∫
0
e−βωk|bk|2d|bk|2

, (F.24)

=
2T 2

ω2
k

, (F.25)

which leads to the following contribution to A

2
∑
k1,k2

δk1,k2
T 2

ω2
k1
ω2
k2

fk1(x)f
∗
k1

(x′)fk2(x)f
∗
k2

(x′)e−i(ωk1+ωk2 )(t−t′) , (F.26)

which allows us to write for A

A = 2
∑
k1,k2

T 2

ω2
k1
ω2
k2

fk1(x)f
∗
k1

(x′)fk2(x)f
∗
k2

(x′)e−i(ωk1+ωk2 )(t−t′) , (F.27)

Similarly for the B term we consider the terms with k1 = k2, k3 = k4 but
k1 6= k3 (not the same as k1 = k4, k2 = k3) which yields the contribution

∑
k1 6=k3

T 2

ωk1ωk3
|fk1(x)|2|fk3(x′)|2 =

∑
k1,k3

T 2

ωk1ωk3
|fk1(x)|2|fk3(x′)|2 −

∑
k

T 2

ω2
k

|fk(x)|2|fk(x′)|2 . (F.28)

Before we compute the other contributions to B we note that when the required
integrals over space are done to complete the calculation of 〈Fψ(t) Fψ(t′)〉, the first
term of Eq. (F.27) may be written as[ ∞∫

−∞

dxU ′′′[φc(x)]φ
′
c(x)

∑
k

T

ω2
k

|fk(x)|2
]2

, (F.29)
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which is zero since the integrand is odd upon the interchange x→ −x , k → −k.
The term for which k1 = k4, k2 = k3 but k1 6= k2 can be written as∑

k1 6=k2

T 2

ωk1ωk2
fk1(x)f

∗
k1

(x′)f ∗k2(x)fk2(x
′)e−i(ωk1−ωk2 )(t−t′) . (F.30)

Finally, evaluation of the k1 = k2 = k3 = k4 term yields exactly −1/2 of the second
term in Eq. (F.27), which when combined with Eq. (F.29) yields

B =
∑
k1,k2

T 2

ω2
k1
ω2
k2

fk1(x)f
∗
k1

(x′)f ∗k2(x)fk2(x
′)e−i(ωk1−ωk2 )(t−t′) . (F.31)

Next we use the fact that f−k(x) = ±f ∗k (x) which allows us to write

B =
∑
k1,k2

T 2

ω2
k1
ω2
k2

fk1(x)f
∗
k1

(x′)fk2(x)f
∗
k2

(x′)e−i(ωk1−ωk2 )(t−t′) , (F.32)

which is the same as A/2 except for the exponential in time. Combining these
factors we have

〈Fψ(t) Fψ(t′)〉 =
1

4M2
0

∫
dxU ′′′[φc(x)]φ

′
c(x)

∫
dx′U ′′′[φc(x

′)]φ′c(x
′)×

×
∑
k1,k2

T 2

ω2
k1
ω2
k2

fk1(x)f
∗
k1

(x′)fk2(x)f
∗
k2

(x′)×

×
{
e−i(ωk1+ωk2 )(t−t′) + e−i(ωk1−ωk2 )(t−t′)

}
+ H.C. (F.33)

We can obtain further simplification by recalling that the functions fk(x) obey

−f ′′k (x) + U ′′[φc(x)]fk(x) = ω2
kfk(x) (F.34)

which allows us to rewrite the integrals in Eq. (F.33) as∫
dxU ′′′[φc(x)]φ

′
c(x)fk1(x)fk2(x)

=
∫
dxfk1(x)fk2(x)

dU ′′[φc(x)]

dx
(F.35)

= −
∫
dxU ′′[φc(x)]

[
f ′k1(x)fk2(x) + fk1(x)f

′
k2

(x)
]

(F.36)

=
∫ {

f ′k1(x)
[
f ′′k2(x) + ω2

k2
fk2
]
+ f ′k2(x)

[
f ′′k1(x) + ω2

k1
fk1
]}
dx (F.37)

=
∫ { d

dx

[
f ′k1(x)f

′
k2

(x)
]
+ (ω2

k1
− ω2

k2
)fk1(x)f

′
k2

(x)

+
d

dx

[
fk1(x)f

′
k2

(x)
]
ω2
k2

}
dx (F.38)

= (ω2
k1
− ω2

k2
)
∫
dxfk1(x)f

′
k2

(x) , (F.39)
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where the surface terms vanish by periodic boundary conditions. Finally we have

〈Fψ(t) Fψ(t′)〉 =
T 2

2M2
0

∑
k1,k2

(ω2
k1
− ω2

k2
)2

ω2
k1
ω2
k2

∣∣∣ ∫ dxfk1(x)f
′
k2

(x)
∣∣∣2 ×

×
[
cos[(ωk1 + ωk2)(t− t′)] + cos[(ωk1 − ωk2)(t− t′)]

]
. (F.40)



Appendix G

Functional Derivatives in Terms
of Kink Variables

In order to derive the Fokker-Planck equation in Appendix H for the kink variables
X and p we need to have expressions for the derivatives with respect to Φ(x, t) and
Π0(x, t) in terms of the new variables {X, p, ψ, π}. The fact that this transforma-
tion is nontrivial may be seen recalling that the ψ field is constrained to be in the
subspace which is perpendicular to φc(x). Therefore, when we take a functional
derivative with respect to ψ it must be understood to include only variations in
that subspace. To see how to take such “constrained” derivatives, it is useful to
examine what is meant when a “regular” functional derivative is taken. Consider
for example the derivative of a field F [Φ(x, t)] with respect to Φ(x′, t′)

δF [Φ(x, t)]

δΦ(x′, t′)
≡ lim

ε→0

F [Φ(x, t) + εδ(x− x′)]− F [Φ(x, t)]

ε
. (G.1)

From this definition, it is clear what is meant by a derivative which is constrained
to the subspace perpendicular to φc(x), namely

δF [ψ(x, t)]

δψ(x′, t′)
= lim

ε→0

F [Φ(x, t) + εδ(x− x′)− εφ
′
c(x)φ

′
c(x

′)
M0

]− F [Φ(x, t)]

ε
. (G.2)

In subtracting the “translation mode” term we allow only variations which are in
the ψ subspace. In particular we have the following derivatives,

δψ(x, t)

δψ(x′, t′)
= δ(x− x′)δ(t− t′)− φ′c(x)φ

′
c(x

′)

M0

δ(t− t′) , (G.3)

δπ(x, t)

δπ(x′, t′)
= δ(x− x′)δ(t− t′)− φ′c(x)φ

′
c(x

′)

M0

δ(t− t′) , (G.4)
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which follow from Eq. (G.2). In writing these “constrained” derivatives, one
should be able to avoid the use of Dirac brackets by using the standard Poisson
brackets with the derivatives understood to mean the constrained derivatives. As a
check we compute the Poisson bracket of ψ(x, t) with π(y, t) using the constrained
derivatives:

{ψ(x, t), π(y, t)}

=

∞∫
−∞

dz

[
δψ(x, t)

δψ(z, t)

δπ(y, t)

δπ(z, t)
− δψ(x, t)

δπ(z, t)

δπ(y, t)

δψ(z, t)

]
, (G.5)

=

∞∫
−∞

dz
(
δ(x− z)− φ′c(x)φ

′
c(z)

M0

)(
δ(y − z)− φ′c(y)φ

′
c(z)

M0

)
, (G.6)

= δ(x− y)− 2
φ′c(x)φ

′
c(y)

M0

+
φ′c(x)φ

′
c(y)

M2
0

∞∫
−∞

dz φ′c(z)φ
′
c(z) , (G.7)

= δ(x− y)− φ′c(x)φ
′
c(y)

M0

, (G.8)

which is exactly the Dirac bracket of ψ(x, t) with π(y, t).
With the identities (G.3) and (G.4) in hand we proceed to derive the deriva-

tives with respect to Φ(x, t) and Π0(x, t). This is accomplished by writing the most
general transformation between the variables and requiring the identities

δΦ(x, t)

δΦ(x′, t′)
= δ(x− x′)δ(t− t′)

δΦ(x, t)

δΠ0(x′, t′)
= 0 (G.9)

δΠ0(x, t)

δΦ(x′, t′)
= 0

δΠ0(x, t)

δΠ0(x′, t′)
= δ(x− x′)δ(t− t′) . (G.10)

First we consider the Φ derivative which may be assumed to have the following
form which is linear in derivatives with respect to kink variables:

δ

δΦ(x′, t′)
=

∫
dt′′A(x′, t′, t′′)

δ

δX(t′′)
+
∫
dx′′dt′′B(x′, t′, x′′, t′′)

δ

δψ(ζ ′′, t′′)

+
∫
dt′′C(x′, t′, t′′)

δ

δp(t′′)
+
∫
dx′′dt′′D(x′, t′, x′′, t′′)

δ

δπ(ζ ′′, t′′)
,(G.11)

with ζ defined by
ζ ≡ x−X . (G.12)

Operating on Φ(x, t) with Eq. (G.9) yields

δ(x− x′)δ(t− t′) = −[φ′c(ζ) + ψ′(ζ, t)]A(x′, t′, t) +B(x′, t′, x, t)

−φ
′
c(ζ)

M0

∫
dx′′ B(x′, t′, x′′, t)φ′c(ζ

′′) .

(G.13)
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Multiplying Eq. (G.13) by φ′c(ζ) and integrating over ζ gives us

A(x′, t′, t) = − φ′c(ζ
′)

M0 + ξ(t′)
δ(t− t′) . (G.14)

Multiplying Eq. (G.13) by ψ(ζ, t) and integrating over ζ gives us

ψ(ζ ′, t)δ(t− t′) =
∫
dx′′B(x′, t′, x′′, t)

[
ψ(ζ ′′, t)− ξ(t)

M0

φ′c(ζ
′′)
]

(G.15)

The solution to this integral equation is

B(x′, t′, x′′, t′′) = δ(t′ − t′′)

{
δ(x′ − x′′) − φ′c(ζ

′)φ′c(ζ
′′)

M0

− φ′c(ζ
′)ψ′(ζ ′′)

M0 + ξ(t)

+
φ′c(ζ

′)φ′c(ζ
′′)ξ(t)

M0(M0 + ξ(t))

}
. (G.16)

When this expression for B is substituted into Eq. (G.13) we see that the terms
proportional to φ′c(ζ

′′) are not necessary since the derivative

δψ(ζ, t)

δψ(ζ ′, t′)
, (G.17)

is manifestly orthogonal to φ′c(ζ). Therefore the expression for B is effectively

B(x′, t′, x′′, t′′) = δ(t′ − t′′)

{
δ(x′ − x′′)− φ′c(ζ

′)ψ′(ζ ′′)

M0 + ξ(t)

}
. (G.18)

The functions C(x′, t′, t′′) and D(x′, t′, x′′, t′′) are obtained by operating on
Π0(x

′, t′) with Eq. (G.11) which yields after quite a bit of algebra

0 =
1

M0 + ξ(t)

[
φ′c(ζ

′)Π′
0(x, t) + φ′c(ζ)Π

′
0(x

′, t)

]
− φ′c(ζ

′)φ′c(ζ)

(M0 + ξ(t))2

∫
dx Π′

0Φ
′

− φ′c(ζ)C(x′, t′, t)

M0 + ξ(t)
+D(x′, t′, x, t)− φ′c(ζ)

M0

∫
dx′′D(x′, t′, x′′, t)φ′c(ζ

′′)

− φ′c(ζ)

M0 + ξ(t)

[
ψ′(ζ ′, t)− ξ(t)

M0

φ′c(ζ
′′)

]
. (G.19)

Multiplying Eq. (G.19) by φ′c(ζ) and ψ(ζ, t) and integrating over ζ yields

0 =
M0

M0 + ξ(t)
Π′

0(x
′, t) +

φ′c(ζ
′)

M0 + ξ(t)

∫
dx′ Π′

0(x
′, t)φ′c(ζ

′)

− M0φ
′
c(ζ

′)

(M0 + ξ(t))2

∫
dx′ Π′

0(x
′, t)Φ′(x′, t)− M0

M0 + ξ(t)
C(x′, t′, t)

− M0

M0 + ξ(t)

∫
dx′′D(x′, t′, x′′, t)

[
ψ′(ζ ′′, t)− ξ(t)

M0

φ′c(ζ
′′)

]
, (G.20)
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and

0 = − ξ(t)

M0 + ξ(t)
C(x′, t′, t) +

M0

M0 + ξ(t)

∫
dx′′D(x′, t′, x′′, t)ψ′(ζ ′′, t)

− ξ(t)

M0 + ξ(t)

∫
dx′′D(x′, t′, x′′, t)φ′c(ζ

′′, t) +
ξ(t)

M0 + ξ(t)
Π′

0(x, t)

+
M0φ

′
c(ζ)

(M0 + ξ(t))2

∫
dx′ Π′

0(x
′, t)Φ′(x, t)− φ′c(ζ

′)

M0 + ξ(t)

∫
dx′Π′

0(x
′, t)φ′c(ζ

′) ,

(G.21)

where the second of these equations was obtained after a bit of algebra. In Eq.
(G.20) we solve for C(x′, t′, t) and substitute this into Eq. (G.21) which, after some
manipulations, gives us

0 =
∫
dx′′D(x′, t′, x′′, t)

[
ψ′(ζ ′, t)− ξ(t)

M0

φ′c(ζ
′′)

]

+
φ′c(ζ)

M0 + ξ(t)

∫
dx′′Π′

0(x
′′, t)

[
ψ′(ζ ′, t)− ξ(t)

M0

φ′c(ζ
′′)

]
, (G.22)

from which we deduce

D(x′, t′, x′′, t′′) = − φ′c(ζ
′)

M0 + ξ(t)
Π′

0(x
′′, t) . (G.23)

Substitution of this expression for D into Eq. (G.21) yields

C(x′, t′, t) = Π′
0(x

′, t)δ(t− t′) (G.24)

Collecting these calculations we have

δ

δΦ(x′, t′)
= − φ′c(ζ

′)

M0 + ξ(t′)

δ

δX(t′′)
+
∫
dx′′

{
δ(x′ − x′′)− φ′c(ζ

′)ψ′(ζ ′′)

M0 + ξ(t)

}
δ

δψ(ζ ′′)

+ Π′
0(x

′, t)
δ

δp(t′)
− φ′c(ζ

′)

M0 + ξ(t′)

∫
dx′′ Π′

0(x
′′, t)

δ

δπ(ζ ′′)
. (G.25)

We derive the analogous expression for the Π0 derivative by using the same
methods. For the sake of brevity we merely present the result,

δ

δΠ0(x′, t′)
= −Φ′(x′, t′)

δ

δp(t′)
+

δ

δπ(ζ ′)
, (G.26)

where in both of the final expressions the full fields Φ and Π0 are used to achieve
a more compact notation.



Appendix H

Fokker-Planck Equation for
P (X, p; t)

In this appendix we derive a Fokker Planck equation for the phase space distribu-
tion function P (X, p; t) (see Chapter 6) by starting from the full field equation

∂P (Φ,Π0; t)

∂t

=

∞∫
−∞

dx

{
−Π0

δ

δΦ
P (Φ,Π0; t)−

δ

δΠ0

[(
Φxx − U ′[Φ]− εΠ0

)
P (Φ,Π0; t)

]

+ εkBT
δ2

δΠ2
0

P (Φ,Π0; t)

}
, (H.1)

substituting the ansatz

P [Φ,Π0; t] = e−βHphP (X, p; t) , (H.2)

with

Hph =
∫ [1

2
π2 +

1

2
ψ′2 +

1

2
ψ2U ′′(φc)

]
. (H.3)

and then using the results of Appendix G, we take the functional derivatives in
Eq. (H.1) in terms of the kink variables. We shall consider each term in Eq. (H.1)
separately to avoid extremely long expresssions. Using Eq. (G.25) the first term
becomes

−
∫

dxΠ0
δP [Φ,Π0; t]

δΦ
=

−
∫
dx Π0

{
− φ′c(ζ)

M0 + ξ

δP (X, p; t)

δX
− β

∫
dx′′

[
δ(x− x′′)− φ′c(ζ)ψ

′(ζ ′′)

M0 + ξ

]
×

× P (X, p; t)
δHph

δψ(ζ ′′, t)
+ β

φ′c(ζ)

M0 + ξ

∫
dx′′ Π′

0

δHph

δπ(ζ ′′, t)

}
. (H.4)
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First consider the derivative with respect to ψ

δHph

δψ(ζ ′′, t)

=
∫
dx′

δ

δψ(ζ ′′, t)

[1
2
ψ′2(ζ ′, t) +

1

2
ψ2(ζ ′, t)U ′′(φc)

]
(H.5)

=
∫
dx′
[
−ψ′′(ζ ′, t) + ψ(ζ ′, t)U ′′(φc)

][
δ(x′ − x′′)− φ′c(ζ

′)φ′c(ζ
′′)

M0

]
(H.6)

= −ψ′′(ζ ′′, t) + ψ(ζ ′′, t)U ′′[φc(ζ
′′)] , (H.7)

where we have repeatedly made use of the constraints (Eq. (3.3.10-11)) and the
fact that φ′′c = U ′(φc). Substituting this expression into the first integration over
x′′ in Eq. (H.4), we have

∫
dx′′

[
δ(x− x′′)− φ′c(ζ)ψ

′(ζ ′′)

M0 + ξ

] δHph

δψ(ζ ′′, t)
=

− ψ′′(ζ, t) + ψ(ζ, t)U ′′[φc(ζ)]

− φ′c(ζ)
ξ

M0

[
−
∫
φ′cψ

′′ + φ′cψU
′′(φc)

]
(H.8)

= −ψ′′(ζ, t) + ψ(ζ, t)U ′′[φc(ζ)] . (H.9)

Next we examine the π derivative term:

−
∫
dxΠ0(x, t)

φc(ζ
′)

M0 + ξ

∫
dx′′Π′

0(x
′′, t)

δHph

δπ(ζ ′′, t)
. (H.10)

The derivative of Hph with respect to π will bring down another factor of π which
results in the product of three momentum fields. Keeping terms of this order is
not consistent with the phonon ansatz made and therefore we do not include this
term. Collecting these results we have for the first term

∞∫
−∞

−Π0
δ

δΦ
P (Φ,Π0; t)

=
M0(p+

∫
πψ′)

(M0 + ξ)2
e−βHph

δP (X, p; t)

δX
+ βe−βHphP (X, p; t)

∫
Π0(ψ

′′ − ψU ′(φc)) .

(H.11)

Using the fact that
δHph

δΠ0

= π , (H.12)
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we easily find that

−
∫
dx
−δ
δΠ0

[
Φxx − U ′(Φ)− εΠ0

]
e−βHphP (X, p; t) =

− βP (X, p; t)e−βHph
∫
dx π

[
−ψ′′ + ψU ′(φc)

]
+ ε

∫
dx

−δ
δΠ0

[
πe−βHphP (X, p; t)

]
+ ε e−βHph

δ

δp
pP (X, p; t) . (H.13)

Finally we have for the last term

ε

β

∫
dx

δ2

δΠ2
0

[
e−βHphP (X, p; t)

]
= −ε

∫
dx

δ

δΠ0

[
πe−βHphP (X, p; t)

]
− ε

β

∫
dx

δ

δΠ0

[
Φ′e−βHph

δP (X, p; t)

δp

]
(H.14)

= −ε
∫
dx

δ

δΠ0

[
πe−βHphP (X, p; t)

]
+

ε

β

[∫
Φ′Φ′

]
e−βHph

δ2P (X, p; t)

δp2
+ ε

(∫
ψ′π

)
e−βHph

δP (X, p; t)

δp
. (H.15)

Combining all three contributions we have

e−βHph
∂P (X, p; t)

∂t

= e−βHph
{

p+
∫
πψ′

M0(1 + ξ/M0)2

δP (X, p; t)

δX

+ β
p+

∫
πψ′

M0(1 + ξ/M0)

∫
dxφ′c

(
ψ′′ − ψU ′(Φ)

)
− p+

∫
πψ′

(M0 + ξ)2
P (X, p; t)

+ ε
δ

δp

[
pP (X, p; t)

]
+
ε

β

(∫
Φ′Φ′

)δ2P (X, p; t)

δp2

}
. (H.16)



Appendix I

Potentials and Masses for
Kink-Antikink φ4 Collisions

Since the analytic expressions for the potentials Vi(x0, y0) and masses mi(x0, y0)
in Chapter 7 are somewhat lengthy, we include them here, along with some useful
properties and Taylor series. Since the integrals have already been published [15],
we merely reproduce these analytic expressions, pointing out an error of 1/2 in
the mass m2. Since the “relativistic” calculations given involve integrals similar
to those done by Campbell et al. [15], we recast the expressions in terms of three
functions wi( z0) with z0 given by

z0 ≡
mx0y0√

2λ
. (I.1)

In terms of these functions wi the potentials and masses take the form:

V1 =

√
2m3y0

2λ

[
4

3
− w1(z0)

]
, (I.2)

V2 =

√
2m3

4λy0

w2(z0) , (I.3)

m1 =

√
2m3y0

λ

[
4

3
+ w1(z0)

]
, (I.4)

m2 =

√
2m3x0

λ
w1(z0) , (I.5)

m3 =

√
2m3

4λy0

w2(z0) , (I.6)

with the functions wi given by

w1(z0) =
sech(z0)(1 + tanh2(z0))

tanh3(z0)

(
z0 −

tanh(z0)

1 + tanh2(z0)

)
, (I.7)
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w2(z0) =
16(1 + tanh2(z0))

tanh(z0)

(
z0 −

tanh(z0)

1 + tanh2(z0)

)
− 8(1 + tanh2(z0))

2

tanh2(z0)

[(
3− 4 tanh2(z0)

1 + tanh2(z0)2

)
z0 −

3 tanh(z0)

1 + tanh2(z0)

]

+
2(1 + tanh2(z0))

3

tanh3(z0)

[(
5− 12 tanh2(z0)

1 + tanh2(z0)2

)
z0 +

16 tanh3(z0)

3(1 + tanh2(z0)3)

− 5 tanh(z0)

1 + tanh2(z0)

]
, (I.8)

w3(z0) =
1

3

(
π2

6
− 1

)

− 2

sinh2(2z0)

[
π2

12

( 2z0

tanh(2z0)
− 1

)
− 4z3

0

3 tanh(2z0)

]
. (I.9)

With the aide of MACSYMA [136] the following Taylor series were computed:

w1(z0) ≈ 4

3
− 32

15
z2
0 +

128

63
z4
0 −

1024

675
z6
0

+
2048

2079
z8
0 −

11321344

19348875
z10
0 +

65536

200475
z12
0 , (I.10)

w2( z0) ≈ 64

3
z2
0 −

512

15
z3
0 +

2816

315
z4
0 +

2048

189
z5
0

− 2048

189
z6
0 −

16384

1575
z7
0 −

421888

51975
z8
0 +

32768

6237
z9
0

+
219250688

42567525
z10
0 − 181141504

70945875
z11
0 +

1906180096

638512875
z12
0 , (I.11)

w3( z0) ≈ 4π2

45
z2
0 +

80π2 + 336

945
z4
0 +

896π2 + 6400

14175
z6
0 −

6400π2 + 59136

675
z8
0

+
15566848π2 + 167731200

638512875
z10
0 − 5218304π2 + 62267392

383107725
z12
0 . (I.12)
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